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ABSTRACT 
A deep-learning based method is introduced to 

detect and identify the inducer cavitation instability. 

To identify alternate blade cavitation, which is a 

common cavitation instability occurs at two-bladed 

inducer, synthetic unsteady pressure data under 

equal length cavitation and alternate blade cavitation 

have been generated and used as training data sets. 

The neural network is trained to categorize the 

unknown unsteady pressure signal into with or 

without cavitation instability. In the present 

research, the network shows good performance in 

capturing the key features of the instability and 

robustness against random noise compared with the 

previous mode analysis technique 

 

INTRODUCTION 
Inducer cavitation instabilities manifest 

themselves as various frequency peaks located 

above and below the shaft frequency harmonics with 

certain spatial mode and propagating direction. As 

the operating condition, such as flow coefficient and 

cavitation number, changes and the number of 

inducer blades varies, different types of cavitation 

instability occur.  For instance, alternate blade 

cavitation, under which large and small cavity are 

developed at the inducer blades in alternating 

sequence, only occurs at even-number-bladed 

inducer [1]. 

To identify those cavitation instabilities, 

unsteady pressure measurements at the inducer inlet 

have been widely used [2]. Through Fourier 

transformation of the unsteady pressure time series 

obtained from the single pressure transducer, 

various frequency peaks can be identified, and 

various cavitation instabilities can be categorized. 

Furthermore, to determine the spatial mode (also 

called as cell number) and propagating direction, 

multiple pressure transducers can be used 

simultaneously. For example, if two unsteady 

pressure transducers are installed at the same axial 

position while 90 degree apart circumferentially, the 

cell number and the propagating direction of the 

instability can be speculated by comparing the phase 

of the Fourier coefficients whose frequencies are the 

peak frequencies. Generally, to completely 

determine the cavitation instability characteristics, 

2n+1 unsteady pressure transducer should be 

installed circumferentially due to the Nyquist-

Shannon sampling theorem, where n is the spatial 

mode of the cavitation instability of interest. While 

typical cavitation instabilities are composed of less 

than three cells, five pressure transducers could be 

installed to fully identify the cavitation instability. 

To determine the frequency, spatial mode, and 

propagating direction from the multiple unsteady 

pressure time signals, Traveling Wave Energy 

(TWE) method is often used [3]. TWE method, 

which could be simply explained as double Fourier 

transformation in time and space, firstly conducts 

Fourier transformation which converts time domain 

into frequency domain. Then, the Fourier 

coefficients of the peak frequencies from the 

multiple unsteady pressure measurements are again 

Fourier transformed, spatial domain into spatial 

mode (also can be interpreted as a spatial frequency) 

domain. Hence, TWE method uses the spatial 

information (circumferentially installed position) of 

the unsteady pressure transducers to determine the 

governing spatial mode for each peak frequency. 

Using TWE method, characteristic frequency, 

spatial mode, and propagating direction of the 

cavitation instability can be obtained at once. 

However, while the mathematical rigorous and 

low computational cost of the TWE method are 

based on the orthogonality of the harmonic 

functions, instalment of the unsteady pressure 

transducer with unequal circumferential spacing 

could undermine the advantages of the TWE 

method. For example, in many inducer experiments, 

visualization of the cavity is needed to identify the 

cavity structure. Thus, at least half of the casing 

circumference should be cleared for the camera 

access. Then, the unsteady pressure transducers 

could be only installed at some limited region of the 

circumference, and the circumferential distance 

between adjacent transducers would not be uniform. 

Also, practical issues such as transducer wires could 

cause non-uniform distribution of the transducers 

[4]. In such case, matrix inversion is needed to 

obtain the magnitude of each spatial mode for the 

specific frequency. Because of the high conditional 

number of the matrix, especially with non-uniformly 

installed pressure transducers, slight noise of the 

phase and magnitude of the frequency component 

for each unsteady pressure time series can induce 
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highly erroneous results. Furthermore, if the 

unsteady flow phenomena contain higher spatial 

mode than the maximum possible spatial mode (n) 

which can be resolved using the given amount of 

unsteady pressure time series, decomposition into 

various spatial modes can be even unrealistic. For 

instance, even though the inducer only suffers from 

the super-synchronous rotating instability, which is 

a single-cell instability, O(1) percent of error in 

Fourier coefficient from unsteady time series could 

make the zeroth spatial mode most prominent, and 

then the instability would identified as a global 

instability such as surge, which can be simply 

refuted via cavity visualization. 

Therefore, the present paper suggests deep-

learning based method to identify the inducer 

cavitation instability to utilise raw unsteady pressure 

time series directly. Thus, cavitation instabilities can 

be recognized as certain collective pattern in the 

high-dimensional raw data. Also, while the present 

method proposes effective data reduction and 

feature extraction method for the periodical high-

dimensional data, it serves as a framework for the 

neural network for the general turbomachinery 

experimental data, and auto-detection and auto-

classification of the instability, including previously 

unknown ones. 

MODEL DESCRIPTION 
 To successfully capture the characteristic 

features of the complex high-dimensional data, 

kernel-type data process is included in the present 

convolution neural network. While the general fully 

connected neural networks are not adequate to 

abstract features from the periodical data, kernel 

layer, which is widely used in reducing high-

dimensional flow field [7, 8], should be added to 

pre-process the raw data and reduce it to a low-

dimensional space. The basic operation principle of 

the kernel layer is shown in Fig. 1. In the present 

neural network, kernels do not slide through the raw 

data one data entity at a time, but jump multiple data 

entities to effectively reduce the dimension of the 

raw data.  

 
Fig. 1. Schematic diagram of the kernel layer 

 In the present study, identifying inducer 

cavitation instability of the two-bladed inducer is 

simulated. For a given flow coefficient, the same 

extent of cavity is developed for the both blades of 

the inducer due to the axisymmetricity under 

sufficiently high inlet pressure. However, as the 

inducer inlet pressure decreases and the system 

becomes susceptible to the cavitation, large extent of 

cavitation develops and alternate blade cavitation 

usually occurs. Under alternate blade cavitation, 

cavity pattern is fixed under the rotating frame. 

However, both blades have different cavity extent. 

On one blade, longer cavity is developed and shorter 

cavity is developed on the other blade. In this case, 

the force is exerted to the axis as if the inducer is 

imbalanced, and asymmetricity occurs. The purpose 

of the study is to discriminate the equal length cavity 

situation and the alternate blade cavitation only by 

directly using the raw data. Thus, synthetic data for 

the unsteady pressure measurements were generated 

for the equal length cavity and alternate blade 

cavitation cases. Under equal length cavity situation, 

due to the symmetricity, the only frequency 

component which is excited is the blade passing 

frequency (2 times shaft rotating frequency). 

Therefore, if the forward direction is defined as the 

rotating direction of the inducer, equal length cavity 

situation would show blade passing frequency, two 

cells, and forward propagating characteristic. To 

reconstruct this characteristic as the unsteady 

pressure signal, inverse Fourier transformation is 

done with relative random noise (relative magnitude 

of the Fourier coefficient with respect to the 

magnitude of blade passing frequency) of 1% for all 

frequencies but the peak frequency. Also, to 

simulate the realistic experimental condition, five 

pressure transducers were supposed to installed in 

the inducer inlet with the circumferential position of 

0, 90, 135, 180, and 270 degree. To implement the 

possible manufacturing and measurement error, the 

mounting position of the pressure transducers are 

also varied randomly with in ±1 degree. Typical 

synthetic unsteady pressure signal from a single 

pressure transducer is shown in Fig. 2.  

On contrary, due to the asymmetricity of the 

alternate blade cavitation, not only blade passing 

frequency component, shaft rotating frequency is 

also excited. Thus, shaft rotating frequency, single 

cell, forward propagating instability is added to the 

equal length cavity baseline case. The relative 

magnitude of the Fourier coefficient for the shaft 

rotating frequency is defined as A.B.C. strength in 

the present paper. 

 
Fig. 2. Typical synthetic unsteady pressure signal under 

equal length cavity 

 
Fig. 3. Typical synthetic unsteady pressure signal under 

alternate blade cavitation 
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The random noises and errors for the other 

frequency components and transducer mounting 

positions are set the same as the equal length cavity 

case. Typical synthetic unsteady pressure signal 

under alternate blade cavitation with A.B.C. strength 

of 100% is shown in Fig. 3 

To extract the relevant features from the given 

synthetic raw data, the following method was used. 

First, auto-encoder structure is used to extract the 

key feature from the raw data. Both encoder and 

decoder are composed of three stages. 4th encoder 

stage was only used for the classification procedure, 

which will be explained later. Figs. 4 and 5 show the 

schematic diagram of the encoder and the decoder. 

 
Fig. 4. Schematic diagram of the encoder 

 
Fig. 5. Schematic diagram of the decoder 

 

 The encoder-decoder set is trained in stack. The 

first stage encoder is directly connected to the first 

stage decoder and trained to minimize the difference 

between input raw data and the reconstructed input 

data. Then, the second stage encoder which is 

followed by the second stage decoder is connected 

to the already-optimized first stage encoder. This 

second stage encoder-decoder pair is trained to 

minimize error between the first encoded data and 

the corresponding reconstructed data. Third stage 

encoder-decoder pair is also trained in the same way. 

These training processes are shown schematically in 

Figs. 6-8.  

 Second, to examine the encoder whether it can 

automatically extract the features which serve as 

criteria for the instability detection, the raw data is 

connected to the kernel layer which is followed by 

the encoder. The fourth stage encoder reduces the 

high-dimensional data into a low-dimensional data 

of 2 by 3, which further reduces the dimension to 

make ease of the classification. Then, the encoder is 

connected to the binary node layer for the 

classification between equal length cavity and 

alternate blade cavitation. A.B.C. strength of 0% and 

10% are used as train data corresponding to the 

equal length cavity, and A.B.C. strength of 90% and 

100% are used as alternate blade cavitation case. 

 
Fig. 6. Schematic diagram of the first stage encoder-

decoder pair 

 
Fig. 7. Schematic diagram of the second stage encoder-

decoder pair 

 

 
Fig. 8. Schematic diagram of the third stage encoder-

decoder pair 

 

After the training, test data (randomly selected from 

0 to 100% A.B.C. strength) were examined whether 

or not it is correctly categorized to equal cavity 

length case and alternate blade cavitation 

RESULTS AND DISCUSSIONS 
Firstly, the encoder-decoder pair is tested 

whether it can adequately represent the raw input 

data by only using low-dimensional data whose 

dimension is nearly 20 times reduced. Fig. 9 shows 

the coded data for the two training cases, A.B.C. 

strength of 0% and 100%, after fourth encoder, 

which is compressed into 6-dimensional data. The 

abscissa of the graph shows the reduced dimension, 

which corresponds to each node, and the ordinate 

shows the value of the nodes. A band-type data, 

which is plotted on the graph, is due to the small 

discrepancies among the trained data caused by the 

presence of the noise. The narrow band shows that 

even though some degree of noise was imposed to 

the training data, key features of the data are well 
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captured, and the features are barely susceptible to 

the noise. Although the physical meaning of each 

reduced dimension can hardly be known, two 

distinct forms of the data between A.B.C. strength of 

0% and 100% shows that different pattern between 

those two cases are properly captured. 

 
Fig. 9. Compressed low-dimensional data 

 

 The coded data shown in Fig. 9 are recovered by 

the decoder, which is trained along with the encoder. 

Fig. 10 shows the comparison between input data 

and the reconstructed data via the decoder. As 

shown in Fig. 10, both A.B.C. strength of 0% and 

100% data are almost fully recovered and their 

dominant features are maintained after the 

reconstruction from the low-dimensional 

compressed data. Therefore, with the selection of the 

appropriate kernel layers, quasi--periodic high-

dimensional unsteady data can be compressed into 

the low-dimensional data without the loss in key 

features. 

 
Fig. 10. Comparison between the input data and the 

reconstructed data 

 After verifying the encoder-decoder system and 

the validation of the compressed data, training data 

were categorized under supervision with two groups: 

equal length cavity and alternate blade cavitation. 

Categorization module consists of two nodes, whose 

state represent the group to which the input data will 

be allocated. For example, [1 0] state corresponds to 

the perfect equal length cavity case (A.B.C. strength 

of 0% without noise), and [0 1] state corresponds to 

the perfect alternate blade cavitation case (A.B.C. 

strength of 100% without noise). Even though the 

values of the nodes do not have to be the 

probabilities, the values can be interpreted as a 

probability, by which an input data belongs to a 

certain group, at least in the present research while 

they are programmed to satisfy the mathematical 

definition of the probability. After the training, test 

data, including the A.B.C. strength other than 0% 

and 100%, were also put into the categorization 

module to verify whether the key features of the 

alternate blade cavitation compared to equal length 

cavity were correctly captured. If the key features 

are well captured, as the A.B.C. strength increases 

monotonically, the probability for the A.B.C. should 

have to also increase monotonically. If the network 

is overfitted or the categorization module exploited 

some minor features to differentiate equal length 

cavity and alternate blade cavitation, the untrained 

data will be categorized randomly, without coherent 

trend (at least in human eye). The values of the 

second node (representing A.B.C. group) for the 

randomly selected untrained data can be shown in 

Fig. 11. 

 
Fig. 11. Alternate blade cavitation probability for the 

various untrained data sets 

 

 As shown in Fig. 11, although the test data with 

A.B.C. strength between 10 to 90% have not been 

used for the training, as the A.B.C. strength 

increases, A.B.C. probability also monotonically 

increases. Therefore, it can be said that the present 

neural network captures the key features of the 

unsteady pressure measurement under A.B.C. in 

good accordance with the traditional instability 

criteria. Also, the sigmoidal form of the above 

probability graph suggests that the present neural 

network also has the practical advantage for the 

instability identification (categorization) problems. 
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To test the applicability of the neural network 

beyond the training data in the manner of 

extrapolation, training data sets were set as the 

A.B.C. strength of 0 and 50%. All the other schemes 

including the encoder-decoder training were the 

same with the 0 & 100% training data case. In 0 & 

50% case, not only the in-between values (which can 

be considered as an interpolation problem), 60 to 

100% of the A.B.C. strengths were tested. If the 

present neural network categorizes the equal blade 

cavity and the alternate blade cavity based on 

specific values of the 50% A.B.C. strength case, and 

not based on the general key features of the alternate 

blade cavitation (overfitted), the extrapolation 

beyond 50% A.B.C. strength will fail, and their 

probability will have the value other than 1. 

However, Fig. 12 shows that this is not the case. Fig. 

12 shows the probability graph for A.B.C. strength 

of 0 to 100%, which is obtained with the training 

data of 0 and 50% A.B.C. strength. From the Fig. 12, 

it can be shown that the A.B.C. values larger than 

60% are all identified as alternate blade cavitation. 

Hence, once the key features of the instability are 

determined, the present neural network shows the 

good performance for the instability detection 

regardless of its magnitude. 

 
Fig. 12. Alternate blade cavitation probability for the 

various untrained data sets (trained by 0 and 50% A.B.C.) 

 

 The practicality of the present neural network 

approach can be much emphasized in comparison 

with the previous Fourier-transformation-type 

detection methods, especially when the pressure 

transducers should be placed in the limited area. 

These situations often occur in turbomachinery 

measurements, due to the practical considerations. 

For instance, in case of making both flow field 

visualization and pressure measurements available, 

the transducer should be installed in the limited area 

due to provide optical access through the casing. To 

mimic those situations, the synthetic data were 

newly generated, assuming that each of the 

measurements were conducted at 0, 36, 72, 108, and 

144 degrees (restricted to the half-annulus). As 

before, the data contains random noise in the Fourier 

coefficient itself, and installed positions are also 

assumed to be subjected to random Gaussian error, 

to include the possible manufacturing tolerance. In 

the case of the neural network approach, change in 

measurement positions hardly affects the results. 

Alternate blade cavitation is well identified and 

similar results with Figs. 11 and 12 are obtained. To 

compare with the present method, Traveling Wave 

Energy (TWE) method [5] was selected for the 

Fourier-transformation-type instability detection 

scheme. It is based on the double Fourier 

transformation in time and space domain, which can 

obtain the frequency, spatial mode (up to second 

mode with five measurement points, following 

Nyquist-Shannon sampling theorem), and 

propagating direction. To briefly explain, the 

pressure signals are first decomposed into various 

spatial modes as follows [3]: 

 

𝑔(𝑡, 𝜃) = 𝑅𝑒 {∑ (
𝛿𝑔𝑛𝑅(𝑡) −

𝑗 ∙ 𝛿𝑔𝑛𝐼(𝑡)
) ∙ 𝑒𝑗𝑛𝜃𝑁

𝑛=0 }            (1) 

 

Then, the obtained spatial Fourier coefficients, 

𝛿𝑔𝑛𝑅(𝑡)  and 𝛿𝑔𝑛𝐼(𝑡) , are temporally Fourier 

transformed to obtain 𝑒𝑗(𝑛𝜃−𝜔𝑡)  (forward 

propagating) and 𝑒𝑗(𝑛𝜃+𝜔𝑡) (backward propagating) 

components. Thus, the raw unsteady pressure signal 

would be decomposed into various propagating 

canonical modes, and by interrogating the dominant 

modes, the presense of the instability can be said. 

 However, even though TWE method gives 

much information about the instabillity, it can be 

prone to the noise if the measurement stations are 

not distributed unifomly around the circumference. 

With the present assmption of compact unsteady 

pressure transducer install area, the condition 

number of the inverse spatial Fourier transformation 

matrix (by which 𝛿𝑔𝑛𝑅(𝑡)  and 𝛿𝑔𝑛𝐼(𝑡)  can be 

obtained with Eq. (1)) is larger than 40. Therefore, 

small error could cause the significant error in signal 

decomposition. For example, even though the 

difference in A.B.C. strength for each measurement 

location is less than 5%, and the phase error between 

two adjacent stations is less than 5 degrees (which is 

a typical error level in the experiment), 100% A.B.C. 

strengh would be judeged as containing surge (0th 

spatial mode instability) with almost 56% relative 

magnitude (Table 1). This can be emphasized by 

plotting the complex temporal Fourier coefficient of 

the blade passing frequency compared with the from 

the five measurement stations, compared with the 

values for the noiseless alternate blade cavitation. In 

Fig. 13, five dots shows the temporal Fourier 

coefficient of the synthetic data with noise. Also 

shown in Fig. 13 as the orange lines are the 0, 36, 72, 

108, and 144 degrees angle line. If there are no 

noises and only signal of 100% A.B.C. strength is 

added to the equal cavity length case, all of the 

Fourier coefficients should exist at the intersection 

between the orange lines and the unit circle. It can 

be seen that the actual deviation between the noise 

contained synthetic data and the noiseless case is 

almost negligible. However, it results in significant 
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error in instability detection while Fourier-

transformation-type scheme is used. 

 Therefore, if the main purpose of the expeirment 

is identification and categorization of the instability, 

especially when each instaiblity has distinctive 

feature and its occurence realm hardly overlaps, the 

present method provide more robustness against the 

noise and practical limitations. Although both neural 

network approach and Forier-transformation-type 

approach are mathematically rigorous, the concepts 

of the approach are different, and the neural network 

could have much values in certain situation as 

mentioned above (of course, in other situations, 

Fourier-transformation-type approach could be 

more appropriate). In case of the Fourier 

transformation, the decomposition of raw signal into 

modes are performed with fixed set of orthogonal 

functions, namely, harmonic functions. If multiple 

instabilities occur simultaneously, mode 

decomposition  with Fourier transformation is useful 

to distinguish all the instabilities. 

 

Table 1. Mode decomposition of the synthetic data with 

the restricted area of unsteady pressure measurements 

Instability type 
Relative magnitude 

(as defined in the same way 

with the A.B.C. strength) 

Backward propagating 

2nd spatial mode 
19.63% 

Backward propagating, 

1st spatial mode 
44.15% 

0th spatial mode 

(surge-type) 
56.00% 

Forward propagating, 

1st spatial mode 
79.99% 

Forward propagating, 

2nd spatial mode 
15.00% 

 

 
Fig. 13. Temporal Fourier transformation coefficients 

from five measurement stations in restricted area case 

 

 However, as in many turbomachinery 

applications, if each instability mode appears 

distinctly and even suppresses other modes (such as 

compresssor stall and surge [6]), rather than mode 

decomposition using the fixed set of orthogonal 

function, finding appropriate set of orthogonal 

functions that each of them could robustly represent 

corresponding instability is of much interest. In such 

case, the neural network approach is more pertinent 

for the purpose due to its feature extracting 

capability. 

 As a demonstration of the simple supervised 

binary categorization for the high-dimensional 

quasi-periodic data, the present research serves as a 

framework for the categorization of multiple 

instabilities. Also, by introducing the unsupervised 

auto-clustering technique to the present resarch, 

previously unlearned instability can be captured, 

which would show unexpected patterns or features 

in the raw signals, and might be used to detect hardly 

discernible instability precursors, including 

compressor pre-stall behaviors. 

SUMMARY AND CONCLUSIONS 
The new conclusions from this study are as follows  

●A new method based on the neural network 

which could directly extract key features from the 

high-dimensional quasi-periodic raw data, and 

robustly identify the cavitation instability has been 

developed. 

●The data has been compressed into low-

dimensional data which can almost fully represent 

the original high-dimensionality. This has been done 

through the encoder strucutre and the kernel layer. 

The data compression precedure has been verified 

using the encoder-decoder pair, which has been 

trained together in stack. 

●The present method provides more robust 

instability identification schemes against noise 

compared to the Fourier-transformation-type 

scheme. Also, the key feature extracting capability 

of the present scheme can be used for the general 

multi-instability categorization and capturing pre-

instability behavior. 
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