#### Complex Aero Engine Intake Aerodynamics





#### Pavlos K Zachos, David G. MacManus, Daniel Gil

Propulsion Engineering Centre - Cranfield University, United Kingdom

XXIII Biennial Symposium on Measuring Techniques in Turbomachinery, Transonic and Supersonic Flows in Cascades and Turbomachines, Stuttgart, Germany 2016

www.cranfield.ac.uk



#### Agenda

Introduction and rationale

- Experimental facility and methods
  - Rig layout
  - Instrumentation setup and data processing
  - Test matrix
- □ Flow velocity measurements
  - AIP time averaged and unsteady flow analysis
  - Distortion metrics and statistics
- CFD methods
- What about pressure distortion ?
- Wrap up

#### Centre for Propulsion Engineering – Experimental aerodynamics – Complex aero engine intakes



- □ Future air vehicles importance of engine system integration.
- Compact configurations sufficient operability margin.
- Advanced civil configurations partially embedded engines.







- Complex engine installations and intakes.
- Distorted, unsteady flow fields presented to aero-engine.
- 8x5 pressure rake can't measure that!







#### Rationale and current challenges



- $\Box$  Co-rotating swirl + pressure distortion  $\rightarrow$  Surge margin loss.
- □ Counter-rotating swirl + pressure distortion  $\rightarrow$  Dramatic surge margin loss.
- □ Need for synchronous assessments of pressure and swirl distortion.
- □ No swirl data exist to support the understanding of swirl characteristics.

Stall

inception?

PIV?



### Complex intake facility -Rig layout





## Experimental facility & methods Rig layout





## Experimental facility & methods Rig layout





Low offset S-duct Inlet diameter = 121 mm Area ratio = 1.52 Offset to Inlet Diameter ratio = 1.34

- □ Suck-down configuration.
- Maximum Mach number at the S-duct inlet ~ 0.8
- Circular working section diameter = 150 mm.



Glass wall thickness = 5 mm.

□ Capability to generate additional, prescribed distortion at the S-duct inlet.



□ 3C-2D PIV at a cross flow plane.

©Cranfield University 2016

Crai

□ S-PIV plane at 0.25D<sub>out</sub> i.e. 37 mm downstream of S-duct exit.

**Experimental facility & methods** 

- Dual cavity pulsed Nd:YAG laser 200 mJ/pulse acquisition rate 7.5Hz
- □ 2x TSI PowerView Plus cameras at 4MP (2048 x 2048 px).
- □ 45° off-axis arrangement.
- □ Field of view = 150 mm
- Upstream measurement plane at 0.9Di

## Experimental facility & methods Instrumentation setup



Cranfield

### Experimental facility & methods SPIV workflow



#### Illumination



- □ TSI Insight4G.
- □ 1,000 images per dataset.
- □ Image pre-filtering.
- □ Five plane calibration with 3<sup>rd</sup> order polynomials.
- □ Recursive Nyquist processing  $\rightarrow$  64x64/32x32 with 50% window overlap.
- □ Final spatial resolution 1.2 x 1.2 mm i.e. 0.8%  $D_{out} \rightarrow$  9,000 velocity vectors per plane.



#### 3 component velocity field







#### Experimental facility & methods Case matrix



|                                      |                           | Inlet Mach | Inlet Re <sub>p</sub> |
|--------------------------------------|---------------------------|------------|-----------------------|
| D <sub>i</sub><br>D <sub>i</sub><br> | D <sub>i</sub> = 121.6 mm |            | U                     |
|                                      | $A_{out} / A_{in} = 1.52$ | 0.27       | 5.9e+5                |
|                                      | H / D <sub>i</sub> = 1.34 | 0.45       | 9.9e+5                |
|                                      | L/D <sub>i</sub> = 5.0    | 0.6        | 13.2e+5               |
| D <sub>i</sub> C                     | D <sub>i</sub> = 121.6 mm |            |                       |
|                                      | $A_{out} / A_{in} = 1.52$ | 0.27       | 6.01e+5               |
|                                      | H / D <sub>i</sub> = 2.44 | 0.45       | 10.05e+5              |
|                                      | L / D <sub>i</sub> = 4.95 | 0.6        | 13.8e+5               |



#### AIP flow analysis Time averaged out of plane velocity



- □ Expected low velocity region.
- □ More pronounced at HO.
- □ Stronger secondary flows.
- Upstream movement of centreline separation point.
- Loss migrates to a more central location at the HO Sduct.
- □ Affects distortion descriptors.
- □ Top separation captured.
- Weak effect of Mach / Re.

#### Cranfield UNIVERSITY

### AIP flow analysis Unsteady out of plane velocity



- □ At the LO max unsteadiness co-located with max loss.
- Unsteadiness reduces close to the wall.
- $\Box$  < 5% across the rest of the AIP ~10% at the top loss region.  $\Box$
- U Weak effect of Mach.

- $\Box$  More extensive at HO higher peak values ~20%.
- □ More central position associated with main loss zone.
  - **Spanwise position affects turbomachinery performance.**
- □ No region of low unsteadiness.



#### AIP flow analysis Unsteady radial velocity



- At the LO max unsteadiness at the lower AIP part.
- □ At the HO higher unsteadiness closer to the AIP center.
- □ Mach number doubles the highly unsteady regions in both cases.

#### Cranfield UNIVERSITY

 $\sigma_{u\theta} / W_{ref}$ 

0.18

0.155

0.13

0.105

0.08

0.055

0.03

0.005

#### AIP flow analysis Unsteady circumferential velocity



- At the LO max unsteadiness close to the max loss region.
- Greater radial position than unsteady out of plane velocity.
- Distinct high and low unsteadiness regions.
- □ Distribution unaffected by Mach number levels increase.
- □ At the HO similar topology higher levels.
- □ Contrast with out of plane velocity unsteadiness.
- Modest effect of Mach number.

#### Cranfield UNIVERSITY

#### AIP flow analysis Time averaged radial Reynolds stress



- □ HO shows a vertical oscillatory pattern.
- **□** Extends across top and bottom parts.
- Associated with the shedding of the separated flow within the duct.
- □ Inlet Mach does not affect the topology.
- Slight increase at the unsteadiness and extent of the unsteady regions.



#### AIP flow analysis Time averaged swirl angle





- Localised at the LO.
- Restricted at the bottom part of AIP.
- High swirl angle levels at the HO – covering ~40% of the AIP.
- □ Similar levels in both cases.



### AIP flow analysis Unsteady swirl angle



- □ Substantial swirl angle variations for both cases.
- At LO more localised unsteady swirl mainly dictated by the unsteady circumferential velocity.
- **Ο** More extended regions at HO aligned with highly unsteady regions of w and  $u\theta$ .

~37 mm

σ<sub>a</sub> [deg]

15

12.5

10

7.5

5

2.5

 Both out of plane and circumferential components contribute equally.

## AIP flow analysis Instantaneous velocity and swirl







## AIP flow analysis Instantaneous velocity and swirl



Very challenging for an 8x5 rake !!!





### AIP flow analysis Time averaged vorticity



- Highest levels at bottom part of the AIP.
- At LO vortex centers are further apart and at a lower position.
- Peak vorticity does not coincide with peak out of plane velocity unsteadiness regions.
- Not necessarily associated with separation point.



#### Flow distortion metrics SAE Swirl intensity



## Flow distortion metrics SC60





## Flow distortion metrics SI - SC60 maps





- □ Assessment of dynamic distortion
- □ Synchronous field data -enables statistics of field descriptor
- Development of new descriptors

## Flow distortion metrics SI - SC60 maps





#### Flow distortion metrics SAE Swirl pairs





$$SP(i) = \frac{\sum_{k=1}^{m} SS_{i,k}^{+} \cdot \theta_{i,k}^{+} + \sum_{k}^{m} |SS_{i,k}^{-}| \cdot \theta_{i,k}^{-}}{2 \cdot Max \{ SS_{i,k}^{+} \cdot \theta_{i,k}^{+}, |SS_{i,k}^{-} \cdot \theta_{i,k}^{-}| \}_{k=1,...,m}}$$

XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016



#### Flow distortion metrics SAE Swirl directivity



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Flow distortion metrics SAE SD - SP maps



M<sub>in</sub> = 0.6



1.5

1



#### Wrap up

- □ S-PIV at the cross flow plane at the exit of complex aero engine intakes was enabled and distorted flows were successfully measured.
- ❑ Achieved spatial resolution: 0.8% of the AIP diameter → 9,000 3C velocity vectors across the AIP. Step change compared to the 40 point measurements across the AIP.
- □ Unsteady, time averaged and statistical analysis for two S-duct configurations.
- □ High offset S-duct generates around 80% more distorted and more unsteady flow with higher levels of swirl angle. This is also reflected in the distortion descriptors.
- □ Mach number has only a modest effect on the AIP flow topology as well in descriptor distribution in both configurations → Distortion performance dominated mainly by S-Duct offset.
- □ Distortion cloud maps allowed the inspection of swirl descriptor distributions in time → Identification of extreme events with potential impact on the downstream compression system.
- □ Key step forward in unlocking complex duct aerodynamics.



#### Numerical capabilities / DDES / POD



### CFD vs experiments I



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

Cranfield UNIVERSITY

#### CFD vs experiments II



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Coherent structure identification via POD – First Switching Mode (FSM)





XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Coherent structure identification via POD – Second Switching Mode (SSM)



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

Cranfield

#### Coherent structure identification via POD – First Vertical Mode (FVM)





XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Coherent structure identification via POD – Second Vertical Mode (SVM)





XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

## Swirl switching originates from separation region



**Streamwise velocity** Lateral velocity 1.06 St=0.53 PSD of  $a_{FSM}$ First AIP Switching Mode  $\Phi^u_{FSM}$  -2.5  $\Phi^{w}_{FSM}$ 2.5 0 0 1 8.0 0.5 1.0 1.5 2.0 St 1.06 St=0.53 PSD of  $a_{SSM}$ AIP Second switching mode  $\Phi^{w}_{SSM}$  $\Phi^u_{SSM}$  -2.5 2.5 0 0 1 8.0 1.0 1.5 2.0 0.5

0.0

XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

DDES data only

St

Cranfield UNIVERSITY

#### Shear layer unsteadiness





#### What about inlet pressure distortion ?



#### Rationale and current challenges

- □ Future air vehicles importance of engine system integration.
- □ Compact configurations sufficient operability margin.
- □ Advanced civil configurations partially embedded engines.



#### Cranfield UNIVERSITY

#### Pressure field from PIV data?

#### ©Cranfield University 2016



 Can PIV data be further exploited to determine pressure fields and total pressure distortion metrics ???

2. Planar, tomographic, low bandwidth or time-resolved PIV ???

3. Boundary conditions ???

## Pressure derivation from velocity data methods



- □ Velocity field → Pressure field → Mechanical loads (usually measured separately)
- Synchronous estimation of flow kinetics, kinematics and load information
- □ Time-averaged or time-resolved mode
- Reduce instrumentation needs in wind tunnel tests



Cran

van Oudheusden et al, 2007

 $\nabla \mathbf{p} = \left[ \begin{array}{c} \rho\left(\frac{\partial u}{\partial t} + u \cdot \nabla u\right) + \mu \nabla^2 u \\ \varphi \\ \text{Source} \\ \text{Temporal variation} \\ \text{Viscous diffusion} \\ \text{Convection} \\ \text{Viscous diffusion} \\ \text{Viscous diffusi} \\ \text{Viscous diffusion} \\ \text{$ 

#### Momentum equation:



#### Pressure derivation from velocity

Momentum equation:



## Pressure derivation from velocity data - Methods



**Direct Spatial Integration of momentum equation (DSI):** 

$$\frac{\partial p}{\partial r} = -\rho \left( \frac{\partial u_r}{\partial t} + u_r \frac{\partial u_r}{\partial r} + \frac{u_\theta}{r} \frac{\partial u_r}{\partial \theta} - \frac{u_\theta^2}{r} + u_z \frac{\partial u_r}{\partial z} \right)$$

$$\frac{1}{r}\frac{\partial p}{\partial \theta} = -\rho \left( \frac{\partial u_{\theta}}{\partial t} + u_{r}\frac{\partial u_{\theta}}{\partial r} + \frac{u_{\theta}}{r}\frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{\theta}u_{r}}{r} + u_{z}\frac{\partial u_{\theta}}{\partial z} \right)$$

with

$$\rho_{i,j} = \frac{r_{i,j}}{Rt}$$
$$t = t_0 - \frac{1}{2} \frac{u_{i,j}^2}{c_p}$$

Dii

Numerical method as in *Baur et al.*, 1999

#### Poisson Pressure Equation (PPE):

$$\nabla^2 p = -\rho \nabla \cdot \left[ \frac{du}{dt} + u \cdot \nabla u \right] = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial p}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 p}{\partial \theta^2} + \frac{\partial^2 p}{\partial z^2} = = -\rho \left[ \frac{1}{r} \frac{\partial u_r}{\partial t} + \frac{\partial^2 u_r}{\partial r \partial t} + \frac{1}{r} \frac{\partial^2 u_\theta}{\partial \theta \partial t} + \frac{\partial^2 u_z}{\partial z} \right] - \rho \left[ \left( \frac{\partial u_r}{\partial r} \right)^2 + \frac{1}{r^2} \left( \frac{\partial u_\theta}{\partial \theta} \right)^2 + \left( \frac{\partial u_z}{\partial z} \right)^2 + \frac{2}{r} \frac{\partial u_\theta}{\partial r} \frac{\partial u_r}{\partial \theta} + 2 \frac{\partial u_z}{\partial r} \frac{\partial u_r}{\partial z} + \frac{2}{r} \frac{\partial u_z}{\partial \theta} \frac{\partial u_\theta}{\partial z} + \left( \frac{u_r}{r} \right)^2 - 2 \frac{u_\theta}{r} \frac{\partial u_\theta}{\partial r} + 2 \frac{u_r}{r^2} \frac{\partial u_\theta}{\partial \theta} \right]$$
  
Numerical method as in   
*Anderson*, 1995

- □ Impact of flow density
- □ Impact of out-of-plane velocity gradients
- Impact of temporal velocity gradients
- □ Impact of boundary condition

## Pressure derivation from velocity data – Boundary conditions



DSI



□ Static pressure along outer boundary



Static pressure along outer boundary
Divergence of static pressure along virtual boundary

#### Agenda





#### METHOD VERIFICATION

#### Cranfield UNIVERSITY

## S-duct configuration & verification data

| L<br> < | >                           |                           | Inlet Mach     | Inlet Re <sub>D</sub> |
|---------|-----------------------------|---------------------------|----------------|-----------------------|
|         | D <sub>i</sub> = 121.6 mm   | 0.27                      | 6.01e+5        |                       |
|         | $A_{out}$ / $A_{in}$ = 1.52 | 0.45                      | 10.05e+5       |                       |
| •••     |                             | H/D = 2.44                | 0.6            | 13.8e+5               |
|         | 117 D <sub>i</sub> - 2.44   |                           | Presented here |                       |
|         |                             | L / D <sub>i</sub> = 4.95 |                |                       |

Computational methods:

- 1. RANS with  $k-\omega$  SST
- 2. Delayed Detached Eddy Simulations with  $\Delta t=6 \ \mu s \ or \ \Delta t/t_c = 0.00175$
- 3. Velocity field extracted from CFD mapped onto a uniform 50 x 180 points polar grid
- 4. 200 boundary points equi-spaced circumferentially

...further details on CFD methods in MacManus et al, AIAA-2015-3304

#### Time averaged pressure reconstruction— Direct Spatial Integration (DSI)





#### Time averaged pressure reconstruction— Poisson Pressure Equation (PPE)





## Time averaged pressure reconstruction



|     | DENSITY  | $\left(\frac{\partial u_i}{\partial u_i}\right)$ | <i>Ix10<sup>3</sup></i> | Ix10 <sup>3</sup> |
|-----|----------|--------------------------------------------------|-------------------------|-------------------|
|     | DENSITY  | $\left(\frac{\partial z}{\partial z}\right)$     | M <sub>in</sub> =0.6    | Min=0.27          |
| DSI | variable | on                                               | 6.7                     | 6.4               |
|     | variable | off                                              | 15                      | 16                |
|     | constant | on                                               | 6.8                     | 6.5               |
|     | constant | off                                              | 15                      | 17                |
| PPE | variable | on                                               | 5.3                     | 5.5               |
|     | variable | off                                              | 5.6                     | 6.5               |
|     | constant | on                                               | 5                       | 5.5               |
|     | constant | off                                              | 4.8                     | 6.5               |

Method accuracy index:



- DSI accuracy affected by out-of-plane velocity terms
- Density has no major impact
- □ PPE provides slightly better reconstruction accuracy
- □ PPE accuracy constant regardless of density of out-of-plane velocity gradients treatment
- Both methods allow reasonably accurate derivation of pressure fields from steady, planar, 3C velocity data

## Unsteady pressure reconstruction– Direct Spatial Integration (DSI)





 $\Box$  Delayed Detached Eddy Simulations (k- $\omega$  SST)

- $\Box$   $\Delta t=6 \ \mu s \ or \ \Delta t/t_c = 0.00175$
- **Convective time**  $t_c = 3.41 \text{ ms}$
- **Δ** Solution saved every 3 timesteps or 18 µs

## Cranfield

#### Unsteady pressure reconstruction-**Direct Spatial Integration (DSI)**



Highly distorted, unsymmetrical instantaneous flow fields

DSI robust and accurate enough to reconstruct pressure fields (departure ±1.5%)

XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Cranfield UNIVERSITY

#### Unsteady pressure reconstruction– Direct Spatial Integration (DSI)



## Total pressure distortion descriptors





8 x 5 ring and rake AIP discretisation

# Total pressure distortion descriptor reconstruction – Time averaged descriptor accuracy











- □ DSI DC60 influenced by treatment of density and out-of-plane velocity terms
- Lower discrepancies in PR/RDI/CDI
- PPE consistently under-predicts all descriptors by appr. 8%
- PPE less susceptible to density and out-of-plane terms treatment

XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Total pressure distortion descriptor reconstruction with DSI – Unsteady descriptor accuracy





#### Total pressure distortion descriptor reconstruction with DSI – Unsteady descriptor accuracy





#### Impact of boundary condition – Steady BC / steady DSI reconstruction



Steady DSI reconstruction with  $\rho = var$  and  $\frac{\partial u_i}{\partial z}$  ON



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Impact of boundary condition – Unsteady BC / unsteady DSI reconstruction



Unsteady DSI reconstruction with 
$$\rho = var$$
,  $\frac{\partial u_i}{\partial z}$  ON and  $\frac{\partial u_i}{\partial t}$  ON



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Stuttgart, 2016

#### Impact of boundary condition – Steady BC / unsteady DSI reconstruction

Unsteady DSI reconstruction with 
$$\rho = var$$
,  $\frac{\partial u_i}{\partial z}$  ON and  $\frac{\partial u_i}{\partial t}$  ON



Cran



#### Wrap up

- 1. Pressure fields at the exit plane of complex intakes reconstructed from velocimetry data
- 2. Synchronous coupling of swirl and total pressure distortion metrics with high spatial resolution
- 3. Less intrusive instrumentation
- 4. <u>Time-average</u> reconstruction:
  - o DSI functional susceptible to density and out-of-plane velocity gradient treatment
  - PPE functional better accuracy less influenced by density and out-of-plane velocity gradient treatment
  - Max calculated uncertainty appr. -19% (DSI reconstructed DC60 from planar velocity data and constant density)
- 5. <u>Unsteady</u> reconstruction:
  - o DSI functional
  - <15% uncertainty for PR/CDI/RDI appr. 30% uncertainty in DC60
  - PPE more worked needed!
- 6. Impact of <u>boundary conditions:</u>
  - DC60 primarily affected by nature and resolution of static pressure distribution along the boundary
  - Low impact of number & nature of boundary points on PR/CDI/RDI reconstruction
  - Potential to reconstruct unsteady distortion metrics with a low resolution, steady BC



#### In conclusion...

✓ S-PIV provides a step change in measurement capability

 Velocimetry data can be further exploited in conjunction with Hi-Fi numerical methods

...even to reconstruct flow properties (pressure fields)

 $\checkmark$  Advanced processing methods are very powerful if used wisely



#### Recent papers on the topic

- 1. Pavlos Zachos, David G. MacManus, and Nicola Chiereghin. "Flow distortion measurements in convoluted aero engine intakes", *33rd AIAA Applied Aerodynamics Conference*, AIAA 2015-3305, Dallas, TX, USA. In press AIAA Journal
- 2. David G. MacManus, Nicola Chiereghin, Daniel Gil Prieto, and Pavlos Zachos. "Complex aero-engine intake ducts and dynamic distortion", *33rd AIAA Applied Aerodynamics Conference*, AIAA 2015-3304, Dallas, TX, USA. **Under review AIAA Journal**
- 3. Gil Prieto, D., Zachos, P., K., MacManus, D., G., Tanguy, G., "Convoluted Intake distortion measurements using stereo PIV", *34th AIAA Applied Aerodynamics Conference*, AIAA 2016-3560, Washington DC, USA.
- 4. Gil Prieto, D., MacManus, D., G., **Zachos, P., K.,** Tanguy, G., Wilson, F., Chiereghin, N., "Dynamic Flow distortion investigation in S-ducts using DDES and SPIV data", *34th AIAA Applied Aerodynamics Conference,* AIAA 2016-3562, Washington DC, USA.
- 5. Frascella, M., **Zachos, P., K.,** Gil Prieto, D., MacManus, D., G., "Pressure flow field and inlet flow distortion metrics reconstruction from velocity data", *34th AIAA Applied Aerodynamics Conference,* AIAA 2016-3561, Washington DC, USA.
- 6. Tanguy, G., **Zachos., P., K.**, MacManus., D., Gil Prieto, D., "Passive flow control study in a convoluted intake using stereo particle image velocimetry", *34th AIAA Applied Aerodynamics Conference*, AIAA 2016-3563, Washington DC, USA.

## Complex aero engine intake aerodynamics





#### Pavlos K Zachos, David G. MacManus, Daniel Gil

Propulsion Engineering Centre - Cranfield University, United Kingdom

XXIII Biannual Symposium on Measuring Techniques in Turbomachinery, Transonic and Supersonic Flows in Cascades and Turbomachines, Stuttgart, Germany 2016

www.cranfield.ac.uk