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ABSTRACT 
This paper investigates numerically an oval and 

trapezoidal probe from the steady and unsteady 
point of view, in a wide range of Mach 0.3 and 0.75 
at several yaw angles. Angular sensitivity as well as 
static / total pressure distortion was determined. The 
sensitivity to probe induced unsteady vortex 
shedding was computed during steady operation as 
well as during transients. The dynamic response of 
the pressure tappings were carefully analyzed 
performing unsteady Reynolds Averaged Navier 
Stokes (URANS) simulations. The dynamic 
response of pressure tappings indicates that vortex 
shedding unsteadiness propagates into the sensors. 

NOMENCLATURE 
Symbol  
a 
CCF 
Cp 
D 
Dt 
fn 
fA 
fØ	
fM	

fS	
fC 
f 
fn 
L 
M 
MinMax 
i 

Sonic speed[m/s] 
Cross-correlation coefficient 
Pressure coefficient 
Probe diameter[mm] 
Tube diameter[mm] 
Resonance frequency[kHz] 
Fuzzy set for DFT amplitude convergence 
Fuzzy set for DFT phase convergence 
Fuzzy set for time-mean convergence 
Fuzzy set for convergence of signal shape 
Fuzzy set for overall convergence 
Vortex shedding frequency[kHz] 
Resonance Frequency[kHz] 
Tube length[mm] 
Mach number 
Maximum-minimum 
Points on the curvilinear coordinate 

Psi Measured static pressure[Bar] 
Ps 
Psensor 

Inlet static pressure[Bar] 
Static pressure measured by sensor 

Pt 
Re 

Inlet total pressure[Bar] 
Reynolds number 

s Curvilinear coordinate 
𝑆𝑡 Strouhal number 
U 
Vc 
Vt 

Free stream velocity [m/s] 
Cavity Volume[m3] 
Tube Volume[m3] 
 

INTRODUCTION 
Aerodynamic probes are ubiquitous in 

turbomachinery research and gas turbine 
monitoring. The wide variety of multi-hole probes 
can be classified according to their shape [1]. 
Dominy and Hodson [2] evaluated the effect of 
different five-hole probe geometries on the size and 
location of the recirculation bubble. Villafane et al 
[3] measured in their lab the angle sensitivity of 
conical and oval probes and errors on the angle 
determination during the experimental calibration. 
To improve the accuracy in transonic measurements, 
Kost [4] proposed the use of an additional pressure 
tapping in the base region. Regrettably the 
previously described experimental procedures is not 
suitable for the optimization of the ideal probe for a 
transonic application. Calibrated numerical tools 
offer an alternative procedure to yield insights into 
the detailed aerodynamics within the probe, and the 
ability to couple with optimizers. 

In this paper, numerical analysis is performed 
on the angle sensitivity and induced unsteadiness 
sensitivity of the oval and trapezoidal probes, 
hemispherical and conical respectively in 3D. The 
studies were performed over a wide range of Mach 
numbers from subsonic to the transonic regime, 
using a 2D URANS solver. The vortex shedding 
affects noticeably the pressure readings. Resonance 
frequency of tube-cavity system was evaluated 
performing transient simulations. 

 

METHODOLOGY 
This numerical investigation consisted on two 

different steps. First we characterized two different 
probe geometries, and their performance at different 
incidence angles, regarding pressure coefficients as 
well as the propagation of the vortex shedding 
effects upstream. In the second evaluation we 
selected the oval probe geometry, but now including 
the line-cavity effects into the pressure tappings. 

Fig.1 shows the two investigated probe 
geometries, both with identical overall dimensions, 
i.e. 4.4Í2.2 mm2. The computational domain is 
100Í100 mm2, covering more than 20 times the 
probe dimension upstream and downstream. The 
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grid was unstructured, with 259407 cells. The y+ was 
lower than 1 in all the simulations. 

The URANS solver is ANSYS Fluent 16.2, 
density based solver. The turbulence closure was 
provide with the K-w SST model, which is well 
suited for adverse pressure gradients and separated 
flows. The analysis was performed at several Mach 
numbers, but here we report the results at Mach 0.3, 
0.6 and 0.75. For the unsteady subsonic calculations, 
we selected a time step of 1µs, whereas for the 
transonic regime the time step is 0.1µs. The data was 
stored every 10µs, allowing to resolve a maximum 
frequency of 100 kHz. The observation window in 
all frequency analysis was 2ms to ensure 0.5kHz 
frequency resolution The total computational time 
for each simulation was about 576 hours on an 
Intel(R) Xeon(R) CPU 2.40Ghz machine. 

 

 
Figure 1: Top) Trapezoidal probe geometry and 

computational domain. Bottom) Oval probe geometry 
and computational domain 

 
The curvilinear coordinate “S” shown in Fig.1 

is defined around the probe perimeter. To quantify 
the angle sensitivity, we use the pressure coefficient 
which is the local static pressure at the location “i” 
compared to the undisturbed flow static pressure, 
non dimensionalized by the dynamic pressure: 

𝐶$% =
'(%)'(
'*)'(

    (1) 

In the equation Pt and Ps are the undisturbed flow 
total and static pressures, imposed far upstream, at 
the inlet of the computational domain. 

Statistical analyses were performed at five 
equiangular positions along the curvilinear 
coordinates: “a”, “b”, “c”, “d”, “e”. The flow field 
around the probe is intrinsically unsteady, primarily 
due to the instantaneous vortex shedding. Hence, the 
flow properties periodically oscillate instead of 
converging to fixed values. We selected location “a”, 
at the leading edge, to assess the convergence. 

Fig. 2-top shows the pressure signal at the probe 
leading edge. Fig. 2-center displays a zoomed 
portion of the previous trace, comprising seven 
consecutive periods. In Fig. 2-bottom the three last 
periods agree very well with each other. 

 
 

 
Figure 2: Periodic unsteady convergence 

 
To assess convergence we use the method of 

Clark and Grover [5], by generating a series of fuzzy 
set, mean-level fluctuations during the numerical 
evaluation. Discrete Fourier Transform (DFT) 
amplitudes and phases at frequency of interest, and 
cross-correlation coefficients at each periodic cycle 
are performed. Two consecutive cycles form a pair 
and are compared to calculate the membership grade 
of period convergence in each fuzzy sets. In this 
case, 6 pairs need to be computed. An overall fuzzy 
set is then formed by using multi-valued logic to 
describe the overall periodic convergence, refer to 
Klir and Yuan [6] for detailed fuzzy set theory. 
Equations (2) to (7) are applied to calculate each 
fuzzy set. 

𝐶𝐶𝐹(𝑃., 𝑃0) =
𝑃.𝑃02

34.
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𝑓E = 1 − |1 −
𝐴0
𝐴.
| 

(4) 

𝑓ɸ = 1 − |
ɸ0 − ɸ.

𝜋
| 

(5) 

𝑓I = 𝐶𝐶𝐹(𝑃., 𝑃0) (6) 

𝑓J = min	(𝑓8, 𝑓E, 	𝑓∅, 	𝑓I)  (7) 
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where P1 and P2 represent non-dimensional static 
pressure of previous cycle and current cycle. The 
frequency of interest in this case is vortex shedding 
frequency, therefore DFT fuzzy set analysis is 
performed at vortex shedding frequency. 
Membership grade of each fuzzy set is shown in 
Fig.2. When fC≥0.95 is achieved for two consecutive 
cycles periodic convergence achieved. 
 

PROBE SHAPE CHARACTERIZATION AT 
SEVERAL INCIDENCE ANGLES 

Fig 3 displays the steady Mach contour with 
yaw variation in subsonic flow. Fig.4 shows static 
pressure non-dimensionalized by the undisturbed 
flow static pressure. A contour of pressure 
coefficient at a, b, c, d, and e at various yaw is 
depicted in Fig.5 combined with the magnitude of 
pressure coefficient difference Cp(large yaw)-Cp(0 
yaw) at point a and c. 

 

 
Figure 3: Steady Mach contour when Mach=0.3 

 
 

Fig.5-top shows that static pressure changes 
with yaw variation and total pressure was recovered 
at 0 yaw. More total pressure was recovered on the 
lateral tappings (b,c) of the oval probe than on the 
trapezoidal probe.  Fig.5-bottom indicates that both 
the trapezoidal and oval show almost the same angle 
sensitivity at smaller yaw at the center tapping.  
However,  as yaw increases, oval is more sensitive 
to yaw variation. Fig.5-bottom displays that the 
trapezoidal cone shows higher angle sensitivity on 
the lateral tapping c. 

When undisturbed flowfield approached 
transonic, Fig.8-top displays a smaller total pressure 

recoveries on the lateral tappings (c,d,and e) of the 
trapezoidal probe compared with the oval probe. 
Comparison between Fig. 8-bottom and Fig.5-
bottom indicates that angle sensitivity of both shapes 
was decreased when flowfield approached transonic  
At the lateral tapping ‘c’, the angle sensitivity 
advantage of the trapezoidal probe was even 
reversed when yaw became larger. 

 

 
Figure 4:  Non-dimensional static pressure as a 

function of curvilinear coordinates and yaw when 
Mach=0.3 

 
 
 

 
Figure 5: Iso-contour of Cp as a function of yaw 

and coordinates (a,b,c,d,e) along probe nose and 
magnitude of pressure coefficient difference between 0 

and different yaw at point a,c when Mach=0.3 
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Figure 6: Steady Mach contour when Mach=0.75 

 
The sensitivity to induced vortex shedding 

unsteadiness was evaluated when selecting locations 
of the lateral pressure tappings. Fig.9 and Fig.10 
shows respectively the instantaneous vortex 
shedding downstream of the two probes at 0 yaw in 
Mach=0.3 and Mach=0.75. Vortex shedding 
frequencies based on URANS simulations are 
detailed in Table 1, together with results from St-Re 
correlation for confined flow [7] which were 
evaluated applying Eq.8. Results show a higher 
vortex shedding frequency obtained from the oval 
probe, which indicates an enhanced unsteadiness 
propagation. 

 

 
Figure 7:  Non-dimensional static pressure as a 

function of curvilinear coordinates and yaw when 
Mach=0.75 

 
Figure 8:  Iso-contour of Cp as a function of yaw 

and coordinates (a,b,c,d,e) along probe nose and 
magnitude of pressure coefficient difference between 0 

and different yaw at point a,c when Mach=0.75 
 
 
 
 
 
 
 

 
Figure 9:  Vortex shedding downstream of the probe 

at Mach=0.3 and 0 yaw 
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Figure 10:  Vortex shedding downstream of the 

probe at Mach=0.75 and 0 yaw 
 

 
Table 1: Strouhal-Reynolds correlation 

𝑆𝑡 =
𝑓𝐷
𝑈

 
 (8) 

Where f is vortex shedding frequency, D is probe 
diameter and U is free stream velocity.  

Statistical analysis is implemented to 
investigate unsteadiness sensitivity and results are 
depicted in Fig.11. Fig.11-top shows that the oval 
probe is less affected by the unsteadiness at 0 yaw. 
When flowfield approached transonic, bottom two 
figures imply that the vortex shedding unsteadiness 
was increased due to the higher vortex shedding 
frequency and lateral tapping ‘c’ should be avoid on 
the oval probe where induced unsteadiness is 
severely strong. 

 

 
Figure 11: MinMax as a function of yaw and Mach 

 

OVAL PROBE WITH PRESSURE TAPPINGS 
The oval probe is shown in Fig.23. One central 

and two lateral tappings are drilled perpendicular to 
head surface. The angular positions between central 
and lateral tappings are located at ±50°. The 
diameter of line is 0.3mm and the diameter of cavity 
is 0.6mm. 

 

 
Figure 12: Oval probe 

 
The analysis of the unsteady circulation, and 

effect of the pneumatic line is fundamental to ensure 
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an accurate pressure reading. Instantaneous pictures 
of the vortex shedding downstream of the probe at 
Mach=0.3 and Mach=0.6 are shown in Fig.14. 
Frequency analyses were performed on the 
downstream flow velocity non-dimensionalized by 
undisturbed flow velocity Usensor/U as well as 
measured pressure signal non-dimensionalized with 
undisturbed flow static pressure Psensor/Ps in the 
Sensor 1 and 2 to retrieve vortex shedding frequency 
and the dynamic response of the pressure tappings. 

 

 
Figure 13: Unsteadiness propagation of vortex 

shedding into the oval probe 
 

Fig.13 top identifies the vortex shedding 
frequency is 11±0.5kHz at Mach=0.3 and 
18.5±0.5kHz at Mach=0.6. Interestingly, at 
Mach=0.3, Fig.13-top-left revealsthe first, the 
second, and the third harmonic after the dominant 
vortex shedding frequency and their amplitude is 
decreasing by half. At Mach=0.6, Fig. 13 top-right 
reveals the second harmonic occurs and its 
amplitude decreases by half. 

Frequency response of pressure tappings at 
sensor 1 reveals the same dominant vortex shedding 
frequency. The amplitude of the harmonic is far 
lower than the dominant frequency especially at 
lateral pressure tapping. However, in the sensor 2, 
response is dominated by the moving acoustic wave 
which is 3.5±0.5kHz.This was verified by the fact 
that the sound speed at sensor 2 was 336.2m/s and 
the length of the computational domain is 100mm, 
therefore analytic frequency of the moving acoustic 
wave is 3.36 kHz. Fig.13 implies that induced vortex 
shedding unsteadiness has propagated into pressure 
tappings where sensors are located 

Similarly, at Mach=0.6, shedding unsteadiness 
has also propagated into pressure tappings. 
However, frequency of the moving acoustic wave is 
attenuated to 3kHz due to the increased speed of 
flowfield which increase of the speed of the reflected 
acoustic wave. 

 

 
 

 
Figure 14: Transfer function identification 

 
Helmholtz theory is implemented to predict 

resonance frequency of central tube-cavity system 
where sensor 2 located. The theory is expressed as: 

 

𝑓3 =
𝑎
2𝜋

𝜋𝐷@0

4𝐿𝑉<
 

 
(9) 

Where 𝑎 is sonic speed, Dt is tube diameter, L is 
tube length, and Vc is the volume of the cavity. 
Helmholtz theory predicts 16.3 kHz. Helmholtz 
theory works better when the cavity length is 
negligible compared with the line length [8]. For the 
oval probe, it is obviously not applicable. Hougen et 
al [9] introduced a more accurate model which 
considering compressible flow effects in the line 
defined as: 
 

𝑓3 =
𝑎
2𝜋𝐿

1

0.5 + 𝑉<
𝑉@

 
 

(10) 

Where Vt is tube volume. The modified 
resonance frequency of the center cavity is 15.2kHz. 
In order to validate the analytic model applied, after 
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the unsteady simulations are periodically converged 
at t=6ms, a total pressure step was initiated at 
pressure inlet. Reference sensor is 18D downwards 
from sensor 2 shown in Fig.12. The obtained 
transfer functions are shown in Fig.14. The cavity 
resonance frequency from numerical approach is 
identified as 7.1 kHz at Mach=0.3 and 6.9 kHz at 
Mach=0.6 which are less than 50% of the theoretical 
value, implying the overestimation of the analytic 
model on predicting the resonance frequency of the 
tube-cavity system. 

 

CONCLUSTION 
Steady results show that total pressure recovery 

is higher on the lateral tappings of the oval probe. 
Trapezoidal probe shows higher angle sensitivity on 
the lateral tappings in subsonic flow. However, 
transonic effect decreases angle sensitivity of both 
shapes and this is more serious on the trapezoidal 
probe. Unsteady sensitivity is enhanced due to the 
higher vortex shedding frequency when flowfield 
approached transonic. Frequency analysis reveals 
the induced unsteadiness propagated into the 
pressure tappings. Interestingly, the present 
numerical results shows values, about half of what 
we would expect from the traditional analytical 
models. 
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