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ABSTRACT 

In high speed (         ) and low 

density (          flows, a hot wire 

anemometer is highly sensitive to the velocity, 

density and total temperature of the flow, making 

its application to these flow regimes complicated. 

In the present investigation, the HWA sensitivities 

to the aforementioned flow properties are 

computed using a data-reduction technique based 

on empirical correlations. A set of data obtained at 

different flow conditions is employed to 

demonstrate the concept and to discuss the 

application of the HWA technique to different flow 

ranges. To evaluate the methodology, a comparison 

with experimentally defined sensitivities available 

in the literature is performed. 

NOMENCLATURE 
 

   Wire diameter 

   Bridge output voltage 

   Grashof number 

  Current 

  Thermal conductivity 

  Active wire length 

   Knudsen number 

  Mach number 

   Nusselt number 

   Prandtl number 

   Reynolds number 

   Lead’s resistance 

   Bridge top resistance 

   Wire resistance 

    Sensitivity to total temperature 

   Sensitivity to velocity 

   Sensitivity to yaw angle 

   Sensitivity to pitch angle 

   Sensitivity to density 

    Sensitivity to mass flux 

   Total temperature 

   Recovery temperature 

   Wire temperature 

  Velocity 

 

Greek  
  Yaw angle 

  Pitch angle 

  Recovery factor 

  Overheat ratio         

  Dynamic viscosity 

  Density 

   Overheating parameter 
                 

  Correction factor 

 
Sub- and Superscripts 
  Total conditions 

      Wire number 

     Corrected for compressibility effect 

  Recovery 

  Wire 

    Fluctuating quantity 

    Time averaged quantity 

 

Abbreviations 
CCA Constant Current Anemometry 

CTA Constant Temperature Anemometry 

HWA Hot Wire Anemometry 

 

 

INTRODUCTION 
The Hot-Wire Anemometry is among the most 

popular techniques for measuring velocity 

fluctuations, and therefore turbulence, thanks to its 

high spatial resolution (wire diameters as small as 5 

μm), and high frequency response (up to 50 kHz) 

[1]. It has been extensively used for many years, 

with the first works dating back to the beginning of 

the 20
th

 century (e.g. Boussinesq [2] and King [3]). 

Despite being a widely used tool for turbulence 

research in incompressible and supersonic flows, 

few studies exist in high subsonic/transonic and 

low density flows. Its application is complicated in 

these flow regimes and still limited, even today. 

Turbomachinery flows often lie in this 
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“problematic” flow range and researchers like 

Cukurel et al. [4] and Boyle et al. [5] have 

proposed extensions to the applicability of HWA in 

such conditions. Nevertheless, further 

investigations are required before a general 

measurement methodology is established. 

In this context, the present investigation seeks 

to contribute to the understanding of the behavior 

of CTA hot-wire anemometers in different flow 

conditions, through the evaluation of their 

sensitivities to the velocity, density and total 

temperature of the flow. The sensitivities are 

computed using a data reduction procedure based 

on empirical correlations. 

 

HWA OPERATING PRINCIPLE 
The HWA technique is based on the 

convective heat transfer over heated wires. A HW 

is sensitive to the convective power of the flow that 

is investing it. In incompressible, isothermal flows 

the output voltage of the anemometer can be 

directly related to the flow velocity and well known 

relationships like King’s Law can be used. 

However, in the most general case the convective 

heat transfer is expressed by the Nusselt number 

and depends on the following parameters [1, 6]: 

 
                              (1) 

 
 

 

For Constant Temperature Anemometry (CTA), 

with a given probe geometry (       ), in a 

specific fluid with moderate flow temperature 

variations       ), and by neglecting the natural 

convection (when           [1], the relationship 

reduces to the following equation [4]: 

 
 Nu=f(Re, M, α, β) (2) 

 
 

The particularities and limitations of the HWA 

application in different flow conditions are well 

summarized in a review paper by Stainback & 

Nagabushana [6], where the following flow 

regimes are distinguished (in terms of Mach 

number): 

 subsonic incompressible flow         
 subsonic compressible, transonic and low 

supersonic flow             
 high supersonic flow         

within which, one can distinguish the following 

sub-regimes (in terms of Knudsen number): 

 continuum flow           

 slip flow               

 free molecular flow           

The Knudsen number is defined as the ratio of the 

molecular mean free path length to a characteristic 

length of the flow (the wire diameter in the Hot 

Wire case) and it expresses the deviation from the 

continuum flow. It can be related to Mach and 

Reynolds numbers by: 

 
   

 

  
 
  

 
 

(3) 

 

 

 

In incompressible continuum flows the Nusselt 

number is a unique function of Reynolds. The same 

has been observed for supersonic continuum flows 

with       [6, 7], so in this case eq. (2) reduces 

to            . In high speed flows there is a 

strong Mach number effect, as expressed in eq. (2).  

Moreover, it has been observed by different 

researchers, that in low density flows this 

compressibility effect can extend much lower than 

the typical incompressibility limit of       [6]. 

Spangenberg [8] was the first to attribute this effect 

to gas rarefaction: at low densities the HW often 

operates in slip flow conditions due to its small 

dimeter. Thus, high subsonic/transonic continuum 

flows and subsonic slip flows can be treated 

together, as the same heat transfer relationship 

applies to both:              . Since   ,   

and    are linked, as shown in eq. (2), any two of 

the three parameters can be used to describe the 

non-dimensional heat transfer relationship. So eq. 

(2) is equivalent to               and    
           . Different sets of variables have 

been used by different researchers, as described in 

Ref. [6]. 

The recovery factor η which defines the ratio 

of the recovery temperature to the total temperature 

of the flow is also a function of the flow conditions 

[1]. While in incompressible continuum flows its 

effect is negligible (     ), it should be instead 

taken into account in compressible and slip flows. 

An empirical correlation with a wide range of 

validity in the form of           was proposed 

by Dewey [9]. It is based on a collection of 

experimental data by different researchers and can 

be used for all Mach numbers, while extending 

from the free molecule limit to the high Reynolds 

continuum limit.    

Taking into account the recovery factor effect, 

the heat transfer balance over the wire is given by:  

                    (4) 

 By expressing the power supplied in terms of 

bridge voltage, the Nusselt number can be 

rearranged as:   

 

   
  

 

         

  

             
 

(5) 

 

Kovazsnay [7] and Morkovin [10] put the basis 

of the application of HWA for fluctuation 

measurements in supersonic and transonic flows 

respectively. By assuming small perturbations, 

Morkovin [10] related the fluctuations of the output 

voltage of the anemometer to the fluctuations of 

density, velocity and total temperature of the flow 
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for Constant Current Anemometry (CCA). For 

Constant Temperature Anemometry (CTA) and 

straight wires mounted parallel to the flow, the 

following relationship stands: 

   

  
   

  

  
   

  

  
    

  
 

  
 

 
(6) 

where   ,    and    
 are the sensitivities to density, 

velocity and total temperature respectively, defined 

as follows: 

 

 
   

      

     
           

 (7) 

   

 
   

      

     
           

 (8) 

 

 
    

      

                

 (9) 

 

The sensitivities can be expressed in terms of non-

dimensional parameters [6]: 

 

 
   

 

 
 
      

      
 

     

      
  

(10) 

 

 
      

 

  
 
      

     
 

 

  

     

     
  

(11) 

 

 
    

 

 
        

      

      
 

   

 

 
 

  
  

 

  

     

     

   

     

      
 

 
 

  

      

     
  

(12) 

 

where                ,                , 

                 . 

In incompressible and supersonic flows    
      , since the Mach number does not affect 

the heat transfer process (       ). Then the 

HW is sensitive to mass flux and total temperature 

fluctuations and eq. (6) can be simplified to: 

   

  
    

     

      
    

  
 

  
 

 
(13) 

In high subsonic/transonic and subsonic slip flows 

though, there is a strong Mach (or Knudsen) effect 

on the heat transfer process, and      . In this 

case, eq. (6) can only be solved instantaneously by 

using at least 3 wires with sufficiently different 

sensitivities (e.g. different overheats) to solve a 

system with 3 eq. and 3 unknowns.  

In literature there are discrepancies concerning 

the behavior of sensitivities. Horstman & Rose [11] 

found that for high overheat ratios (      ) and 

high Reynolds numbers                . 

Nevertheless this was not supported by other 

studies, where the sensitivity to density was always 

higher than the sensitivity to velocity [12, 13]. 

The yaw angular sensitivity    for inclined 

wires in a planar flow field was first introduced by 

Motallebi [14] and expressed in the following 

form: 

 

 
   

 

 
 
 

  

     

  
 

      

  
  

(

14) 

 

for three or more inclined wires in a three 

dimensional flow field, the pitch angle sensitivity 

   should also be included: 

 

 
   

 

 
 
 

  

     

  
 

      

  
  

(15) 

 

and the sensitivity equation takes the following 

form: 

   

  
   

  

  
   

  

  
    

  
 

  
 

    
     

  
(16) 

 

The fluctuating angles    and    can be computed 

by an angular calibration. Cukurel et al. [4] found 

that the angular calibration was independent of 

Mach and Reynolds number in the tested range. 

The sensitivities can be directly obtained 

through a systematic calibration, where one 

parameter is varied while keeping the other two 

constant. This method requires extensive, lengthy 

calibrations in closed loop facilities.  

METHODOLOGY 
The proposed methodology for the calculation 

of sensitivities is based on the data reduction 

method for x-wire probes developed by Cukurel et 

al. [4]. This method consists in the use of an 

effective wire temperature and of empirical 

correlations to eliminate the dependency of the 

calibration on total temperature and Mach number 

of the flow respectively, which allows establishing 

a unique Nu-Re calibration curve. The procedure 

will be briefly described here, as more details can 

be found in Ref. [4]. 

The Nusselt number is computed by eq. (5), 

while the Reynolds number is defined by: 

 
   

    

 
 

(17) 

 The viscosity   and the thermal conductivity   of 

the flow are evaluated on the total temperature of 

the flow.  

The wire temperature is defined as the 

temperature which collapses a set of Nu-Re data 

obtained at different flow    on a single curve. As 

in incompressible continuum flows there is no 

compressibility effect, the Nusselt number is a 

unique function of Reynolds. The    of a 4
th

 order 
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polynomial fit is used as the selection criterion. The 

wire temperature defined this way is the 

temperature that better represents the convective 

heat transfer process from the wire to the flow. In 

Figure 1, a set of data obtained at different flow 

total temperatures is presented. When plotted in 

terms of voltage and velocity, a different curve is 

created for each temperature level. But when 

plotted in terms of     and     with the effective 

wire temperature in eq. (5), all the data collapse in 

a single curve. 

 

 
Figure 1: Low speed calibration to determine the 
wire temperature 

In the compressible region, a correlation 

proposed by Dewey [9] is employed to eliminate 

the Mach number dependency: 

 

 
             

        

       
 

(18) 

 The correction term         is used to compute a 

corrected Nusselt number which is only dependent 

on Reynolds. The correlation is valid for       

and for all the Reynolds numbers. The correction is 

illustrated in Figure 2. Finally, a single          
    calibration curve is obtained. 

 

 
Figure 2: Nu-Re calibration with application of the 
Mach number correction 

In order to compute the sensitivities, the set of 

equations 13-15 are used. The logarithmic 

derivatives of the recovery factor to Re and Mach 

(
     

      
, 
     

     
) can be analytically computed by the 

empirical correlation proposed by Dewey [9]. The 

logarithmic derivatives of Nusselt to Re and Mach 

can be transformed to: 

 

       

      
 

  

 

  

   
 

          

      
 

(19) 

 
 

       

     
 

 

 

  

  
 

(20) 

 

The terms 
  

   
 and  

  

  
 are the partial derivatives of 

the correction term        . The only term 

depending on the wire properties is 
          

      
, 

which can be directly obtained by the calibration.  

APPLICATION 
In this section, the methodology explained 

above is applied to the data obtained with three hot 

wire probes tested at different flow regimes. All 

probes feature tungsten wires of      diameter. A 

3-wire probe with inclined wires is tested in 

incompressible flow, while two single-wire probes 

placed normal to the flow are tested in 

compressible flow. Angular effects will be thus 

discussed only for the former case. Finally, the 

sensitivities are compared with experimentally 

defined values given by Nagabushana & Stainback 

in Ref. [13]. 

 

Case 1: Incompressible continuum flow 

including angular effects 

A hot wire probe with 3 slanted wires operated 

at different overheat ratios was tested in 

incompressible continuum flow. The flow 

conditions and wire characteristics are given in 

Table 1.  

         9    

     490.75 K 

     462.25 K 

     430.75 K 

  0.01-0.26 

    5-44 

    0.0071-0.0079 

   1.117-1.211       

  1-90      

    291-315   
Table 1: Hot wire characteristics and test flow 
conditions for Case 1. 

In this case, according to the theory, there is no 

Mach number effect on the heat transfer process 

and the sensitivity to velocity is equal to the 

sensitivity to density,         Calculated by eq. 

(10), the sensitivity to velocity for all three wires 

seems to be almost independent of the Reynolds 

and Mach numbers of the flow, as can be seen in 

Figure 3. Moreover, it is only slightly affected by 
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the overheat, which results in small differentiation 

of its value for the three wires. More specifically, 

the sensitivity to velocity is almost equal for wires 

1 and 3 (         ,          ), despite 

having the biggest difference in overheat. A higher 

sensitivity (          ) is computed for wire 2, 

although it is operated at an intermediate 

temperature. 

 
Figure 3: Sensitivity to velocity as a function of 
Reynolds number for all three wires. 

 
Figure 4: Total temperature sensitivity as a function 
of the overheating parameter for the three wires 

In this range of conditions, the total 

temperature sensitivities seem to be independent of 

the Mach and Reynolds numbers and a unique 

function of the temperature difference between the 

heated wire and the flow. This is clearly illustrated 

in Figure 4, where the sensitivities of the three 

wires are plotted as a function of the overheating 

parameter    . The sensitivities are always 

negative, as an increase of the flow temperature 

results in a decrease of the heat transfer rate. As the 

overheat increases, the wires are rendered less 

sensitive to total temperature fluctuations. It should 

be noted that the absolute value of the total 

temperature sensitivity is significantly higher to 

that of the velocity sensitivities, even for the 

highest overheat. Hence, the assumption of 

negligible total temperature fluctuations should be 

treated with caution in such conditions, as it could 

lead to errors. 

Since       and the hot wire is sensitive to 

all three velocity components, the sensitivity 

equation for this case is written as: 

   

   
      

       
       

     

      
     

  
 

  
 

 
(21) 

for i=1, 2, 3.  

The sensitivities to the flow angles    and    are a 

function of the flow Reynolds number and of the 

flow angles. In Figure 5, they are presented as a 

function of the angle for a range of ±30°, where 

       corresponds to the case where the flow is 

aligned to the probe body. The sensitivity of the 

wires to the yaw and pitch angle depends on their 

orientation. It can be seen that wire 1 is more 

sensitive to the pitch angle, while wire 2 is more 

sensitive to the yaw angle. 

 
Figure 5: Angular sensitivities. Left: Yaw sensitivity 
as a function of the yaw angle for      and 
Re=8.5. Right: Pitch sensitivity as a function of the 

pitch angle for      and Re=8.5. 

 
Figure 6: Time-resolved voltage and angular 
compensation. 

The fluctuating angles can be directly obtained 

by an angular calibration, so the angular terms are 

considered known and are moved to the left hand 
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side of Eq.  (21). Subtracting the angular terms 

from the voltage term in Eq. (21), results in the 

correlation of the voltages of the three wires, as can 

be seen in Figure 6. This behavior has been 

observed by Cukurel et al. [4] for an X-wire probe, 

only sensitive to the yaw angle. By compensating 

for the angular sensitivity, the problem of the 3 

slanted wires is equivalent to that of 3 parallel 

wires normal to the flow. Thus only two unknowns 

remain (              and    
   

  ) and the system can 

be solved by employing any set of two wires. It is 

reasonable in this case to choose the two wires with 

the highest and lowest overheat, in order to 

maximize the difference in the total temperature 

sensitivity values. 

  

Case 2: High subsonic slip flow 

This Hot Wire was tested in high subsonic 

(              slip flow            
      ). The hot wire characteristics and test flow 

conditions are presented in Table 2. In this range, 

the sensitivities to density and velocity are 

expected to be different and three wires with 

different sensitivity values will be needed to solve 

the sensitivity equation system. 

    9    

    475   

  0.605-0.67 

    8.06-17.3156 

    0.0567-0.1139 

   0.0806-0.1629       

   197-216     

    289-295   
Table 2: Hot-wire characteristics and test flow 
conditions for Case 2. 

 
Figure 7: Sensitivity to velocity as a function of 
Mach and Knudsen numbers. 

The sensitivities to velocity and density are 

presented in Figure 8. They are plotted in terms of 

Mach and Knudsen numbers in order to highlight 

the gas rarefaction effects. High Knudsen numbers 

correspond to low densities. Both sensitivities are 

highly dependent on Knudsen and Mach, even for 

the narrow Mach number range that was tested in 

this case. They both increase with increasing Mach 

number and decrease with increasing Knudsen 

number. The sensitivity to density is always higher 

than the sensitivity to velocity, with the difference 

being amplified for the higher Knudsen numbers 

(lower densities), as can be seen in Figure 9. The 

sensitivities to density and velocity are not affected 

by the small total temperature variations that were 

present in this case.  

 
Figure 8: Sensitivity to density as a function of Mach 
and Knudsen numbers 

 
Figure 9: Sensitivity to velocity over sensitivity to 
density as a function of Mach and Knudsen 
numbers  

 

Figure 10: Sensitivity to total temperature as a 
function of Mach and Knudsen numbers for T0=292 
K. 

The total temperature sensitivity is a function 

of the Mach, Knudsen and total temperature of the 

flow. Its absolute value increases with increasing 
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Mach and decreasing Reynolds numbers as can be 

seen in Figure 10. As observed in the previous 

section, the total temperature sensitivity is 

increasing with increasing total flow temperature, 

due to the decrease of overheat. This behavior is 

illustrated in Figure 11.  

 

 
Figure 11: Sensitivity to total temperature as a 
function of total temperature for M=0.61 and 

   =0.075. 

Case 3: Low subsonic to high subsonic 

continuum flow 

In this case, a hot wire was tested in 

continuum flow (          in a Mach number 

range from 0.1 to 0.55. The wire characteristics and 

the flow conditions are summarized in Table 3. 

    9    

    459   

  0.1-0.55 

    22.6-111.5 

    0.007-0.0072 

   1.2-1.2308       

   36-180     

    280-287   
Table 3: Case 3: Hot-wire characteristics and test 
flow conditions 

As previously explained, to correct for the 

Mach number dependency on the heat transfer, a 

correlation proposed by Dewey [9] is employed 

that results in a corrected Nusselt, independent of 

Mach and a unique function of Reynolds. This 

correlation is valid for M>0.3, which results in two 

different curves, as can be seen in the left of Figure 

12: 

 Curve A: For M>0.3, Dewey’s correlation 

is applied 

 Curve B: M<0.3, no correction applied, 

         . 

This behavior can create difficulties when 

measuring in Mach number’s around 0.3. It is 

preferable to have a single calibration curve 

covering all the Mach number range. For this 

reason, a correlation proposed by Klopfer [15] is 

employed, which constitutes an extension to 

Dewey’s correction to cover the range     
   . Klopfer uses a weighted logarithmic average 

between the corrected Nusselt number at       

by Dewey and the Oseen solution at     by 

Cole and Roshko [16]. This extension was 

validated on a set of experimental data ranging 

over           . In the right part of Figure 

12, the extended correlation is applied, creating a 

continuous calibration curve for the whole Mach 

number range: 

 For        Dewey’s correlation 

 For        Klopfer’s extension 

 
Figure 12: Left: Application of Dewey’s correlation, 
Right: Addition of Klopfer’s extension. 

 
Figure 13: Sensitivity to density as a function of 
Mach and Knudsen numbers. 

 
Figure 14: Sensitivity to velocity as a function of 
Mach and Knudsen numbers. 

The sensitivities are presented in Figures 13-

17. Klopfer’s extension doesn’t provide reasonable 
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where Dewey’s correlation is applied. 

Nevertheless, Klopfer’s extension can still be 

useful to acquire the Reynold’s number of the flow. 

The sensitivity to density presents similar behavior 

with case 2: it increases with increasing Mach 

number. It also increases slightly with decreasing 

Knudsen number: this effect is very small for all 

sensitivities, since there is only a small variation of 

density for this case. 

 
Figure 15: Sensitivity to velocity over sensitivity to 
density as a function of Mach and Knudsen 
numbers 

 
Figure 16: Sensitivity to total temperature as 
function of Mach and Knudsen numbers, for 
T0=282 K. 

 
Figure 17: Sensitivity to total temperature as a 
function of total temperature, for M=0.4 and 

   =0.0071. 

The sensitivity to velocity increases with the 

Mach number, as in case 2, for       . But a 

sharp increase is observed towards lower Mach 

numbers. This behavior is caused by the term 

             (Eq. (11)) which is computed by 

Eq. (20), so is solely based on the correlation. This 

effect can be seen also in the behavior of the 

sensitivity to total temperature in Figure 16, which 

decreases rapidly for       . It should be noted 

that even for higher Mach numbers its behavior is 

opposite to that observed in case 2. But as also 

observed in the previous sections, it is a strong 

function of temperature, increasing with increasing 

total flow temperature. Finally, as it can be seen in 

Figure 15, the sensitivity to velocity is always 

lower than the one of density, even at the proximity 

of the incompressibility limit of      . 

 

Comparison with literature 

In this section, the data presented before are 

compared with the data of Nagabushana and 

Stainback given in Ref. [13]. It is a collection of 

experimental data obtained in subsonic slip flow 

conditions with CTA anemometers, where the 

sensitivities to temperature, velocity and density 

are computed with two different methods. The 

results that will be included here were obtained 

with a single wire placed normal to the flow, in the 

conditions presented in Table 4. The sensitivities 

presented were computed based on the functional 

dependency of the voltage to velocity, density and 

total temperature               and not by 

using non-dimensional values. The total 

temperature sensitivity data of Nagabushana & 

Stainback have significant scatter and no 

observations could be made. Hence, they would not 

be included in the following comparison.   
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Table 4: Wire characteristics and flow conditions, 
Stainback & Nagabushana [13]. 

M

S
u
/S



 

 

0.3 0.35 0.4 0.45 0.5 0.55
0.55

0.6

0.65

0.7

0.75

0.8

0.85

Kn
w

0.00705

0.0071

0.00715

0.0072

M

S
T

0

 

 

0.3 0.35 0.4 0.45 0.5 0.55

-0.585

-0.58

-0.575

-0.57

-0.565

Kn
w

0.00705

0.0071

0.00715

0.0072

280 282 284 286 288
-0.62

-0.61

-0.6

-0.59

-0.58

-0.57

-0.56

T0 [K]

S
T

0



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery 
Transonic and Supersonic Flow in Cascades and Turbomachines 

 

9  Stuttgart, Germany 

  1-2 September 2016 

 
Figure 18: Sensitivity to density. 

The sensitivities to density for Cases 2 and 3 

are plotted together with the ones of Nagabushana 

& Stainback [13] in Figure 18. For all cases, the 

sensitivity is increasing with increasing Mach 

number. In the case of Nagabushana & Stainback, 

there seems to be no effect of the Knudsen number, 

contrary to cases 2 and 3. Nevertheless, for Case 3 

the Knudsen number varies in a very small range, 

while Case 2 data are obtained at higher Mach and 

Knudsen numbers. Thus, further investigation is 

required before a conclusion can be reached. It can 

be seen though that the values of case 3 are close to 

the values obtained by Stainback & Nagabushana. . 

 
Figure 19: Sensitivity to velocity. 

The sensitivities to velocity are presented in 

Figure 19. The data of Nagabushana & Stainback 

feature significant scatter and it is difficult to 

discern clear patterns. Nevertheless, it seems that 

the sensitivity decreases for increasing Knudsen 

numbers (lower densities) as is also observed for 

case 3. Moreover, there seems to be a decreasing 

trend with increasing Mach number which matches 

the behavior of Case 3 for         Again, more 

data are required in order to draw conclusions and 

be able to evaluate the behavior of the velocity 

sensitivity 

 
Figure 20: Sensitivity to velocity over sensitivity to 
density 

In Figure 20, the ratios of the sensitivity to 

velocity over the sensitivity to density are 

presented. Except for a few points of Nagabushana 

& Stainback, the sensitivity to velocity is always 

lower than the sensitivity to density. With the 

correlation in use, the sensitivity to velocity can 

never be higher than the sensitivity to density for 

     , as the term added to    in Eq. (11) is 

always negative. The ratio decreases with 

increasing Knudsen (lower velocities) for all cases, 

implying that at low density flows a hot wire is 

significantly more sensitive to density than to 

velocity. Thus, this should be considered when 

measuring in such kind of flows.   

CONCLUSIONS 
The HWA sensitivities to density, velocity and 

total temperature have been studied in different 

flow conditions, computed with a data reduction 

methodology, which employs an empirical 

correlation to evaluate the compressibility effect on 

the heat transfer from the wire to the flow. An 

extension to the correlation was tested to cover the 

Mach number range for M<0.3, but did not provide 

reasonable sensitivity values. Thus, the possible 

compressibility effect due to gas rarefaction for 

      could not be considered.  

For all the cases tested, it is clear that the 

sensitivity to total temperature is mainly dependent 

on the overheat, while slightly affected by Knudsen 

and Mach. Thus, by varying the temperature of the 

wire, very different sensitivities can be achieved. 

On the contrary, the overheat seems to have a small 

influence on the sensitivities to density and 

velocity, even when the wire temperature is 

significantly varied (Case 1). As a result, using 

multiple wires operated at different temperatures 

might not be adequate in order to solve the 

sensitivity equation system. Other solutions should 

be investigated, like using different wire diameters 

(different Knudsen numbers), since the Knudsen 

number seems to have an important effect, at least 

on the velocity sensitivity. 
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The absolute value of the total temperature 

sensitivity is always more than 50% higher than the 

ones of velocity and density. The common 

assumption of negligible total temperature 

fluctuations should thus be treated with caution for 

each application, unless much higher overheats are 

used. In addition, the sensitivity to density is 

significantly higher than the sensitivity to velocity 

for low density flows, a fact that should be taken 

into account in such applications.  

In order to evaluate the methodology, the 

results are compared with experimentally computed 

sensitivities by Nagabushana & Stainback [13]. 

Unfortunately these data cover a small range of 

conditions and there is limited overlap with the 

current cases. Nevertheless, similar trends are 

observed and reasonable sensitivity values. In any 

case, further investigations are required before the 

applicability of this methodology is assessed.  

To conclude, the most important remarks 

concerning the application of HWA are repeated 

here: 

 When using typical overheating parameters of 

0.7-0.8,     is more than 50% higher than    

and   . Hence, total temperature fluctuations 

can have an important effect on the 

measurement. 

 In slip flows    is significantly higher than   , 

so density fluctuations can influence the 

measurement. 

  Different overheats do not suffice to 

differentiate    and    in order to decouple the 

velocity and density fluctuations using the 

sensitivity equation. Other solutions should be 

investigated. 
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