

On the Development of a 7-Sensor Fast-Response for Wind Energy Application

M. Mansour, G. Koçer, C. Lenherr, N. Chokani and R.S. Abhari ETH Zurich, Switzerland

XX Biannual Symposium on Measuring Techniques in Turbomachinery Transonic and Supersomic Flow in Cascades and Turbomachines Milano, ITALY, 23-24 September

LEC? Laboratory for Energy Conversion

Outline

- Motivation
- Objectives
- Seven-Sensor Fast Response Aerodynamic Probe (7S-FRAP)
- Results
- Concluding Remarks

Motivation

 Continued rapid increase of wind energy projects, with hub height exceeding often 90m, requires improved approaches to site assessment

	Range (m)	Resolution (m)	Cost (USD)
Mast	80-90	-	65'000
SODAR	1'000 - 2'000	~ 30 - 40	100'000
LIDAR profiler	200	~ 40	219'600
Scanning LIDAR	1'000 - 2'000	~ 100	1'500'000

LEC? Laboratory for Energy Conversion

Objectives

- Develop a light, mobile and cost effective measurement system for time and spatially resolved measurements of wind using an autonomous aircraft
- Provide full-scale measurement data for ETH sub-scale experiment and computational models

Fast Response Probe Requirements

- Light & compact (< 300g)
- Robust for outdoor application
- Low dynamic head;
 - Dynamic head = 0-10mbar (airspeed=0-50m/s)
- Measurement of 3D velocity & turbulence for large flow angles (≤70°)
- High measurement bandwidth (≤1kHz)

UAV's dimensions:

- Wingspan: 800mm
- Lenght: 750mm
- Front payload bay: 40 X 280mm

F7S Sensor Packaging

- Low pressure piezo-resistive pressure sensors ($0 \le p \le 50$ mbar)
- Sensor installed onto a socket encapsulated in threaded casing
- Threaded casing enables quick replacement of sensor in case of failure

September 23-24 2010 - Milano, Italy

LEC?

F7S Probe Design

- 7 fast-response pressure sensors embedded beneath pressure taps
- Hemispherical head, diameter D = 20mm
- Overall probe length L = 75mm
 - L/D \approx 4, minimizing effect of UAV's potential filed on measured flowfield

F7S Probe: Dynamic Calibration

- Pneumatic cavity between pressure tap and pressure sensor
- Eigenfrequency of pneumatic cavity measured in freejet
- Peak at 3.8kHz is eigenfrequency of cavity
- Cutoff frequency of 3kHz at 3db amplitude sets bandwidth of F7S probe

LEC Laboratory for Energy Conversion

F7S Probe: Static Calibration

- Pressure calibration range: 2 < p< 32 mbar
- Temperature calibration range: 1< T< 65°C
- 7% and 32 % variation in pressure sensitivity and zero pressure offset
- Pressure sensitivity ~100 mV/mbar
- Effective pressure resolution = $\pm 8.6 \ 10^{-3} \ Pa$ (19bits effective ADC)

F7S Probe: AeroCalibration Method

Low flow angles -30< ψ , θ < 30°:

- Center Port 7 (sector 7) reads highest pressure
- Calibration coeffs. computed using P₁ to P₇

Large flow angles $30 < \psi, \theta < 60^{\circ}$:

- Separated flow on leeward side
- Sectored calibration scheme
- Circumferential port n (n = 1 : 6) reads highest pressure
- Subset of 3 pressures P_{n-1} , P_n , P_{n+1} used for calibration coeffs.

F7S Probe: AeroCalibration Method

Calibration conditions:

- Flow speed, 25m/s
- Dynamic pressure, 4mbar
- Ambient temperature, 23°C
- Mach number, 0.074
- -30° < yaw, pitch < 30°

Model standard deviation:

- σ_{ψ} = 5.7×10⁻² °
- σ_{θ} = 5.7×10⁻² °
- σ_{total} = 16.5 Pa

F7S Probe: Uncertainty Analysis

Guide of Uncertainty in Measurements software (GUM):

- Calculation of overall uncertainty by Gaussian error propagation
- Expanded uncertainty (confidence level = 95%)

	Angle [°]		Velocit	Velocity [m/s]		
	Pitch	Yaw	20	25		
Absolute	+/- 1.4	+/ - 2.2	+/- 1.2	+/- 1.2		
Relative	2.33%	3.6%	6 %	4.8 %		

12

Instrumented Uninhabited Aerial Vehicle

F7S probe:

- vertical angle of attack
- horizontal sideslip angle
- total pressure (±47Pa)

On-board sensors:

- GPS:
 - horizontal position (±2.5m)
 - vertical position (±5m)
 - ground speed (±0.1m/s)
 - Vertical speed
 - course heading (±0.5°)
- Infrared sensors:
 - pitch angle
 - roll angle
- Magnetometer:
 - sideslip angle
- Absolute pressure sensor :
 - atmospheric pressure (±150Pa)
- Temperature & humidity sensor:
 - static temperature (±0.3°C)
 - humidity (±1.8%RH)

September 23-24 2010 - Milano, Italy

Wind Velocity Measurement Approaches

Time-resolved wind measurements using F7S probe

- Define V_{wind} vector in earth frame of reference S

$$\vec{V}_{wind,S} = \vec{V}_{air,S} - \vec{V}_{plane,S}$$

31

- $V_{air S}$ from F7S, IR sensors, magnetometer
- $\vec{V}_{plane,S}$ from GPS, IR sensors

Time-averaged wind measurement using circle flight technique

Atmospheric Boundary Layer Measurement Set-uP

Location:

- moderately complex terrain in Northern Germany
- 240m altitude
- area dotted with open agricultural terrain and small forest

Wind Turbine:

- Vestas V80
- rotor diameter, 80m
- hub height, 100m

UAV flight path:

- upstream of wind turbine
- level flight over horizontal distance of 150m
- heights: 80 200m
- height intervals: 15m

LEC

LEC? Laboratory for Energy Conversion

Atmospheric Boundary Layer Measurement

- 2 measurement legs with F7S and 1 measurement leg with circle flight
- measurements capture shear wind profile:
 - accelerated wind profile over 100 and 175m
 - peak velocity around 150m
 - shear factor $V_{150}/V_{200} = 1.2$

Atmospheric Boundary Layer Measurement

	Measured wind velocity [m/s]	Expected wind velocity [m/s]	Nacelle anemometer [m/s]	Deviation Abs. [m/s] / rel. [%]
F7S	4.65	4.5	3.6	0.15 / 3%
Circle flight	3.14	3.06	2.45	0.08 / 2.6%

- Nacelle anemometer at 100m (10 minute averaged)
- Modern rotor retards wind speed downstream of rotor plane by approx. 25%
- Measured velocities at 100m in good agreement with nacelle anemometer

September 23-24 2010 - Milano, Italy

17

ABL Layer Measurement Vs. Logarithmic profile

- Time-resolved wind profiles show up to 44% velocity fluctuations
- Logarithmic wind profile extrapolated from wind speed at 83m with $z_0 = 0.15m$
- Logarithmic wind profile compared to measured profile :
 - underestimates wind velocity up to 32% at 143m
 - overestimates sectionnal lift variation at midspan over rotor swept area by 5%
 - underestimates calculated electrical power by 42%

Concluding Remarks

- A novel measurement approach for wind energy applications, which is comprised of an instrumented UAV equipped with F7S probe, has been developed and demonstrated
- Measurements of atmospheric boundary layer have been performed
- F7S shows 3% wind velocity measurement deviation with nacelle anemometer
- Wind profile extrapolated from single point measurement using logarithmic height profile not adequate for wind turbine sitting in moderate and highly complex terrains

LEC?

Thank you for your attention !

22.09.2010

20