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ABSTRACT 

This paper presented a data processing technique that combines different signal analyses for the spectral 
characterization of the unsteady phenomena developing in the turbomachines. Tools of the classical Fourier 
analysis, such as second order spectra, were combined with tools of the time-frequency analysis (wavelets, 
cross-wavelet, coherence wavelet functions) to identify unsteady phenomena, to define their spectral structure, 
to analyse their evolution in time and to determine their possible propagation direction and velocity.  

Because of the non-linearity of several unsteady phenomena developing in turbomachines, high-order 
moment functions were applied to discriminate between non-linearly coupled pulsations and self-excited 
pulsations and to determine the fraction of the power of each pulsation that was due to the non-linear interaction 
of unsteady phenomena. 

 
INTRODUCTION 

In past years several analytical and experimental approaches were carried out to study the unsteady 
phenomena that occur in turbomachines. The resulting velocity fluctuations were tracked in continuously 
running facilities thanks to LDV and PIV, and experiments were conducted to measure the pressure fluctuations. 
In order to study more in depth the characteristics of these phenomena, spectral analyses were also considered 
by researchers and linear analysis techniques, such as auto- and cross-power spectra, were applied to study the 
spectral structure.  

Although this linear spectral approach allows finding and analyzing the spectral components contained in 
the measured signals, it does not provide information about their time evolution and about possible interaction 
mechanisms that could generate non-linearly coupled pulsations. In order to investigate these aspects second and 
higher order analyses  should be used [1,2,3,4,5,6]. 

The post-processing analysis presented in this paper combines the linear spectral analysis techniques with 
the most advanced time-frequency techniques in order to identify and characterize the spectral structure and the 
evolution in time of the unsteady phenomena developing in the turbomachines. For a thorough investigation of 
the non-linear aspects of these phenomena, high-order spectral techniques are also presented. 

RESULTS AND DISCUSSION 
The proposed signal post-

processing technique was applied to 
unsteady pressure measurements, 
carried out by micro pressure 
transducers at the impeller inlet and 
outlet and in the diffuser blades of a 
centrifugal pump. 

The power spectra of the 
acquired pressure signals allowed to 
identify the main spectral 
components of the signals (fig. 1). 
Besides the blade passage frequency 
and its harmonics, there were several 
peaks identifiable in the spectrum 
and it was difficult to discriminate 
between self-excited pulsations and 
eventually coupled pulsations due to 

 
Fig. 1: Power Spectrum of the unsteady pressure, measured by a 

micro-transducer in the diffuser blade, versus the flow 
rate and the St (n=600 rpm) 
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non-linear phenomena interaction. 
The higher order spectral analysis allows to distinguish between spontaneously excited modes and coupled 
modes, and hence to identify the self-excited peaks that dominates the spectra. In particular, the third order 
spectrum of a signal x(t), known as “bispectrum” and determined as: 

 ( ) += *
k l k lB k ,l E[ X X X ]  (2.1) 

where X is the Fourier Transform of the signal x(t), X* denotes its complex conjugate and k and l are frequency 
indexes [1,2,7,8,9] allows to measure the 
nonlinear dependence between three 
spectral components (k,l,k+l). It has non-
zero value when the three components are 
nonlinearly coupled. 
The bispectral analysis of the pressure 
signals identified the main spectral 
components (StF=0.664 and StS=0.071), 
interacting both with each other and with 
the BPF (fig. 2). All other peaks in the 
spectra are demonstrated to be harmonics 
of these fluctuations or non-linear 
components, generated by the interaction 
between the pulsating phenomena. 

The analysis pointed out the 
sensitivity of the “bispectrum” at the 
number of “cumulant” lags used to 
identify the components nonlinearly 
coupled. Accurate analysis was obtained 
adopting a standard upper range equal to 
the 10% of the number of sample (upper 
order equal to 820) but with a limited 

usability. On the other hand the 
reduction of the number of 
“cumulant” lags below to 40 
reduced the possibility of 
distinguishing the main spectral 
components interacting. 
Probably a sensitivity analysis  
has to be carried out to highlight 
the influence of the number of 
“cumulant” lags to be computed  
on a good compromise between 
data accuracy and usability. 

Once identified the 
dominating frequencies in the 
pressure signals, their time-
evolution was studied by a time-
frequency analysis. The wavelet 
transforms of the pressure 
signals identify the spectral 
components constantly present in 
the spectra and those appearing 
only in a definite period of time 
(figs 3a and 3b).  

These wavelet transform W(s, n) can be computed via the FFT-based fast convolution: 
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where Xk is the Discrete Fourier Transform (DFT) of xn, k is the frequency index, N is the data series length, s is 
the wavelet scale, δt is the sampling interval, n is the localized time index, Ψ0

*(s ωk) is the complex conjugate of 

 
Fig. 2 Bispectrum of the unsteady pressure, measured by a 

micro transducers in the diffuser blade versus the 
Strouhal number St (n=600 rpm)

Fig. 3a Wavelet transform magnitude |Wn| for Q/Qdes=80%. 
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the Fourier transform of the scaled 
version of the "mother wavelet" 
ψ(t), ωk is the angular frequency (if 
k≤N/2, ωk = 2πk/Ndt; else ωk = -
2πk/Nδt). Several well-defined 
mother wavelet functions, such as 
Paul, DOGs (derivatives of the 
Gaussian), Mexican Hat and Morlet 
wavelet, are available for a time-
frequency analysis, and the choice 
depends on several factors, 
according to the expected 
characteristics of the analyzed 
phenomena and on the information 
that have to be extracted [10]. The 
Paul and Morlet wavelets are 
complex functions and allow to 
extract information about both 
amplitude and phase, whereas the 
DOGs and the Mexican Hat are real 
valued functions, returning only a 
single component with a very high 

resolution in time but a low resolution in frequency. 
Moreover, when the investigated phenomena are 
expected to have continuous variations in time for the 
wavelet amplitude, non-orthogonal wavelets 
functions, such as Morlet, Paul and DOGs, have to be 
preferred, whereas orthogonal wavelets (Mexican Hat, 
Haar,…) are more suitable for wavelet spectrum 
highly correlated in time. 
In this case, the Morlet wavelet was chosen with the 
wavenumber 2πf0=6 since it provided a good balance 
between time and frequency localization. 

The combined analysis in the frequency and time-
frequency domains of the pressure signals acquired at 
different positions of the impeller and diffusers, 
allowed to discriminate between system fluctuations 
and fluid-dynamical fluctuations, to determine the 
zone of greater intensity of these fluctuations in the 
pump and to define their evolution in time. In this 
case, it was evident an unsteadiness in time of the 

pulsations at St=0.664, demonstrated to have a 
fluid-dynamical origin, because of their absence 
in the spectra of the not-running pump (fig. 4) 
and in the spectra of the system vibrations. 

To evaluate the possible direction and 
velocity of propagation  of the identified 
pulsating phenomena, the pressure signals 
acquired by transducers placed at different 
positions can be compared both in the frequency 
and in the time frequency domains. 

The cross-spectra of two sampled pressure 
signals xn and yn: 

 ( ) ( ) ( )
1
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 (2.3) 

(where N is the number of samples segments, WH 
is weighting constant corresponding to the time 
window chosen, Xk(f) and Yk(f) are the fast 

Fig. 5 Coherence level between micro-transducers 
placed at the same radial distance at the 
impeller discharge 

Fig. 3b Wavelet transform magnitude |Wn| for Q/Qdes=100%. 

Fig. 4 Power spectrum of the pressure measured 
at the impeller inlet and outlet with the 
pump not-running. 
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Fourier transform of the kth data segment and Xk(f)
* is its complex conjugate), and the coherence function 

between  the two signals: 

 ( )
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allow to verify the propagation of the identified phenomena. High levels of the coherence function (fig. 5) 
between pressure transducers placed at different azimuthal or radial positions at the impeller discharge 
demonstrated a propagation of the pulsating phenomena at St=0.664 both in the circumferential and radial 
direction.  

Moreover, the phase information obtained by the cross-correlation analysis, also allowed to determine the 
propagation velocity. The angular rotation velocity of the identified pulsating structure ωp at St=0.664, 
normalized by the angular impeller rotation speed ω, was calculated by: 

 360 6060
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where the time delay τ, the angular 
distance between the transducers Δθ 
and the impeller rotation speed n were 
known. 

Whereas the radial propagation 
velocity Crp of the identified structure 
downstream of the impeller was 
calculated by: 

rp
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Δ=
γ π

Δ=
τ π

 (2.6) 

where R2 and U2 are respectively the 
radius and the peripheral velocity at 
the impeller blade trailing edge, and 

RΔ  is the radial distance between the 
transducers. 

The continuity in time of this 
propagation was verified in the time-
frequency domains by means of the 
cross-wavelet function, defined by Li 
in 1998 [11], whose corresponding 
cross-wavelet spectrum for two 
sampled signals xn and yn can be 
determined as: 

( ) ( ) ( )=xy x y*W s,n W s,n W s,n   
 (2.7) 

where Wx(s,n) and Wy(s,n) are the 
wavelet transforms of the signals and 
W* states for the complex conjugate 
[12, 13]. In fig. 6 the high and time-
independent level of the cross-wavelet 
spectrum for the frequency at 
St=0.664 combined with a time-
independent phase coincidence 
between the two signals at St=0.664 
highlights a time-independent 
propagation of the phenomenon in the 
circumferential direction with a 

 
Fig. 6 Cross-wavelet transform between  pressure transducers 

placed at the impeller discharge (Q/Qdes=50%) 

 
Fig. 7 Wavelet coherence between  pressure transducers placed 

at the impeller discharge at different radial positions 
(Q/Qdes=40%) 
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constant rotation velocity. The in-phase relation was presented as arrows pointing right, the anti-phase relation 
as arrows pointing left, the 90° phase displacement as arrows pointing straight on.  

Furthermore, the wavelet coherence allows to measure the coherence between two sampled signals not only 
in the frequency domain but also in time domain: 
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( )

( ) ( )

2

2
2 2

=
⋅

xy

n
x y

W s,n
R s

W s,n W s,n
 (2.8) 

where ⋅  indicates a smoothing, done using a weighted running convolution in both the time and scale 

directions. The time smoothing is obtained with a filter corresponding to the absolute value of the wavelet 
function at each scale, normalized to have a total weight of unity, whereas the scale smoothing is done using a 
boxcar filter of width δj0, whose value is empirically determined. In the numerator, the real and imaginary parts 
of the cross-wavelet spectrum are smoothed before the absolute value is calculated, whereas in the denominator 
the smoothing is done on the square wavelet power spectra of the two signals. The amount of the smoothing 
depends on the mother wavelet and on the scale [12,14,15]. For the complex Morlet wavelet function, the filter 
for the time smoothing is  a Gaussian 2 22exp(-t /( s ) ) , whereas δj0 is equal to 0.6.  
In fig. 7, a time-independent coherence for the frequency at St=0.664 between transducers placed at different 
radial positions demonstrates a coherent propagation of the phenomenon not only in the circumferential 
direction but also in the radial direction. 
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