XXIV Biennial Symposium on Measurement Techniques in Turbomachinery

Prague, 29-31 August 2018

Total pressure distortion measurements in S-duct aero-engine intakes

M. Diakostefanis, P. Zachos, G. Tanguy, D. Gil-Prieto, D. MacManus

Propulsion Engineering Centre

www.cranfield.ac.uk

- Introduction
- Experimental facility and measurement methods
- Time averaged total pressure and swirl
- Unsteady pressure measurements
- Spectra and cross-correlation
- Conclusions and overview

Complex intake experimental facility

- 1: Seeding chamber
- 2: Intake
- 3: Flow measurement
- 4: Vortex generator section
- 5: Straight section
- 6: Inlet traverse station
- 7: S-duct
- 8: Measurement plane
- 9: Pressure working section

position

- 10: Suction system
- 11: PIV camera
- 12: Camera traverse system
- 13: Laser
- 14: Support system

S-duct configurations

	•	Inlet Mach	Inlet Rep
\leftarrow	D _i = 121.6 mm		
	$A_{out} / A_{in} = 1.52$	0.27	5.9e+5
	H / D _i = 1.34	0.45	9.9e+5
~61 mm	L / D _i = 5.0	0.6	13.2e+5
L ⊢	D _i = 121.6 mm		
	$A_{out} / A_{in} = 1.52$	0.27	6.01e+5
	$H / D_i = 2.44$	0.45	10.05e+5
	L / D _i = 4.95	0.6	13.8e+5
~61 mm			

- Gauge 19 steel hypodermic tube.
- 10 probes per rake.
- 6 rakes 60 probes.
- Equi-spaced at 60°.
- 20 radial measurement points per rake.

- Gauge 21 steel hypodermic tube.
- x4 3-hole L-shape probes per rake.
- 6 rakes 24 probes.
- Equi-spaced at 60°.
- 24 radial measurement points per rake.

- Amplified transducers HCEM500 by First sensor.
- Up to 1000 samples per second.
- Uncertainties of $\delta P_{0,ref}$ and $\delta \langle \overline{P_0}_{AIP} \rangle$ 226.9 Pa and 107.5 Pa
- Pressure recovery uncertainty 0.0029 for $M_{ref}^* = 0.27$ and 0.0028 for $M_{ref}^* = 0.6$

- 1728 measurement points for swirl survey.
- Adjustable rotation step up to 1° resolution capability.

AIP total pressure distortion descriptors

Туре	Configuration	Inlet Mach	Resolution (rakes x rings)	mean PR	mean DC60	mean CDI	mean RDI
Total Pressure	High offset	0.27 0.60	72 x 20	0.990 0.958	0.164 0.186	0.013 0.058	0.005 0.025
	Low offset	0.27 0.60	72 x 20	0.994 0.969	0.187 0.209	0.013 0.058	0.006 0.0027

- > Main loss region has approximately the same peak loss magnitude for both configurations.
- > Total pressure loss dependent on inlet Mach and S-duct offset.
- > DC60 and CDI also dependent on inlet Mach and S-duct offset.
- Modest impact of offset in RDI. Dependent on inlet Mach.

Cranfield Aerospace

SAE swirl distortion descriptors

- Evaluated at rings and rakes
- Swirl Intensity (SI) quantifies the swirl levels
- Swirl Pairs (SP) and Swirl Directivity (SD) characterize the swirl pattern

AIP pressure based swirl angle and distortion descriptors

Туре	S-duct	Inlet Mach	Resolution (rakes x rings)	mean SI	mean SD	mean SP
Pressure based Swirl	High offset	0.27 0.60	72 x 8	2.52 2.82	0.08 0.11	1.09 1.07
	Low offset	0.27 0.60	72 x 8	2.29 2.39	-0.02 -0.17	0.91 1.01

- Pressure based swirl angles in agreement with PIV results.
- Previous work has demonstrated the potential to reconstruct AIP total pressure profiles and descriptors from PIV results (Zachos et. al., 2016).
- Potential benefit to engine operability campaign timescales.

Instrumentation specification and setup

Mean and unsteady AIP distributions

Banded spectra

Banded spectra

Multi-point lateral cross correlation

- Flexible configuration for AIP total pressure and pressure based swirl survey.
- Unsteady pressure systems enables AIP spectral analyses and crosscorrelations.
- Results provided conventional pressure distortion metrics and total pressure distributions which are overall in agreement with the established literature.
- Identification of flow switching modes via AIP unsteady pressure measurements.

www.cranfield.ac.uk

T: +44 (0)1234 750111

😏 @cranfielduni

- @cranfielduni
- 子 /cranfielduni