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ABSTRACT 
This paper introduces PythonDAQ, an open-

source Python package for measurement data 
acquisition, visualization, storage, and post-
processing. The code is capable of acquiring 
measurement data from any sensor with digital data 
output, performs online calculations, and stores the 
measured and computed data. A client for live data 
visualization and tools for postprocessing are also 
contained in the software package. First, the code is 
introduced explaining the software architecture and 
the currently implemented features. Then, the 
usability is demonstrated by an application at the 
low-speed compressor test rig FRANCC. As last 
step, comparisons between PythonDAQ and 
commercial DAQ solutions, as well as the data 
acquisition software of a major aero-engine 
manufacturer are made. 

NOMENCLATURE 
CFD Computational fluid dynamics 
CGNS CFD general notation system 
CSV Comma-separated values 
DAQ Data acquisition 
FRANCC Fundamental research and new 

concepts compressor 
GUI Graphical user interface 
HDF Hierarchical data format 
MDF Measurement data format 
OPC UA Open platform communications – 

unified architecture 
SI Système international d’unités 

INTRODUCTION 
Measurement setups for turbomachinery test 

rigs generally have a high number of channels, 
whereas, in modern setups, most of them come 
directly from sensors with digital data output, the 
rest indirectly from A/D-converters. The 
measurement data is then transferred to computers 
for further processing. As raw sensor data is often 
not directly human-interpretable, characteristic 
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turbomachinery quantities are computed live from 
the sensor readings. The data is stored and displayed 
to the user as the last step. 

To fulfill these tasks, the designer of a test rig 
has the following two options: Either use a specially 
designed commercial data acquisition software, 
which is generally expensive, or implement its own 
code. The latter is not a trivial task resulting in a 
large personal workload. 

With this paper, a shortcut to the development 
process is provided. PythonDAQ is an open-source 
software package that intends to cover the whole 
workflow from data acquisition and storage until 
postprocessing. The software is designed in a 
modular way, such that different measurement 
setups can be built from an existing catalog of 
classes, avoiding starting from scratch. Features are 
kept as generally usable as possible, but focus is set 
on turbomachinery applications. 

DATA ACQUSITION AND PROCESSING 
CYCLE AND POSTPROCESSING 

To derive the software layout, the general data 
acquisition and processing cycle and the 
postprocessing workflow are discussed in this 
section. First of all, sensors are set up to correct 
operating parameters. The data acquisition itself is 
normally set up as a cyclic task, who’s loop is started 
after the setup. The tasks inside the loop are shown 
in Figure 1 and can be divided into four steps: 

First, the raw data is acquired from sensors via 
digital communication interfaces like Ethernet or 
serial interfaces with different kinds of protocols.  

Then, sensor corrections are made - most 
commonly with a linear calibration applying gain 
and offset. Sensors that have a non-linear behavior, 
e.g., resistive temperature sensors, ([1] Sec. 3.2) 
should be compensated using non-linear calibration 
curves derived from multipoint calibration to 
minimize the error. 

In some applications, the calibrated readings are 
enough to fulfill the measurement task. This 
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especially applies for simple measurement 
configurations or setups where no online 
visualization is needed, so that further data reduction 
is done in postprocessing steps only. In more 
complex setups, the calibrated sensor readings are 
often not directly human-interpretable. For example, 
the pressure readings in turbomachinery tests are 
normally measured relative to ambient pressure, 
where the relative pressure only is no clear 
indication of the operating point of the machine. 
Instead, several steps of computations are needed to 
derive characteristic operating data like the 
corrected speed of the machine, corrected massflow 
as well as pressure and temperature ratios ([2], 
pg. 18ff). Furthermore, dimensionless quantities 
like Reynold’s and Mach numbers and flow and 
work coefficients can be computed. The online 
computation and visualization of this data is needed 
for the operation of the test rig. The steps of 
computations will be called online computations 
throughout the rest of this paper to distinguish them 
from computations made during postprocessing. 

As last step of the cycle, the measured data is 
stored for postprocessing and visualized in live to 
the operators of the test rig. 

 

 
Figure 1: Steps performed during one DAQ cycle 

After completing a measurement, the data is 
postprocessed. The basic steps of postprocessing in 
turbomachinery applications are: (cf. [2]) 

• Reading measurement data files. 
• Statistically evaluating the data, e.g., by 

computing mean values and standard 
deviations. 

• Computing further quantities from the 
acquired sensor readings and online 
computation results. 

• Combining different measurements, e.g., 
spatial averaging of data from probe 
measurements. 

• Plotting data as time series, XY plots, 
contour plots, etc. 

SOFTWARE ARCHITECTURE 
After discussing the principal measurement 

workflow in the previous section, the software 

architecture of PythonDAQ is now derived. As the 
name suggests, PythonDAQ is a pure Python 
software package which consists of several sub-
packages and modules. They are discussed in detail. 
During development, care is taken to keep the 
number of dependencies at a minimum. All parts of 
the software are implemented in a platform-
independent way, so that PythonDAQ can 
theoretically be used on any platform and operating 
system. Up to now, the software has been tested on 
Debian, Ubuntu, MacOS and Windows. 

Generally, the software is designed as a server-
client architecture. The server handles the whole 
data acquisition and processing cycle except the 
visualization. Data is continuously made accessible 
via an OPC UA server. The visualization is 
implemented as a client accessing the live data from 
the server. The idea behind this split is that the server 
application can run on a computer which is placed 
physically close to the device-under-test enabling 
the usage of serial communication or PC-based 
DAQ cards. The client on the other hand is intended 
to run on a PC or Laptop inside the test rig’s control 
room. See ([1] Ch. 1) for a discussion of different 
system layouts. 

Postprocessing applications are detached from 
the server-client architecture and can either be used 
in an automated way on the server or manually on 
any other computer. 

Figure 2 shows the software layout of 
PythonDAQ splitting up the overall software 
package into the server-side and client and 
applications. This split is just made for better 
understanding, there are cross-connections between 
several sub-packages of the two sides. Python 
packages are shown in green color whereas specific 
GUI applications are shown in yellow. 

The dataserver package is the core of the server 
side. It includes the DataServer class which 
manages the data acquisition and processing cycle. 
As cycle timer, the BackgroundScheduler of the 
Advanced Python Scheduler (apscheduler [3]) 
package is used. The DataServer also starts the 
OPC UA server, implemented using the python-
opcua package [4], enabling remote access to the 
measurement data. The dataserver package also 
features a trigger server which allows triggering 
measurements of a predefined number of data 
points. This feature is especially useful for the 
traversing of aerodynamic probes. 

The datastorage package contains several 
classes to write and read measurement data files in 
different file formats. Currently, writing 
measurement data in CSV and HDF5 file format is 
supported. Furthermore, traversing data can be 
mapped into a CGNS file which enables the usage 
of CFD postprocessing tools like ParaView [5]. For 
the postprocessing of data files from commercial 
DAQ systems, a reader class for MDF4 data files is 
implemented. 
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The sensors package contains classes for all 
sensors which are used for the specific measurement 
task. Currently, all sensors of the FRANCC 
compressor test rig (see section below) are 
implemented, but due to legal reasons (e.g., 
proprietary communication protocols), not all of 
them are published. The sensor classes inherit from 
a base sensor class which provides a uniform 
interface to the DataServer. Each sensor device can 
consist of multiple channels as this is the usual case 
for multichannel pressure scanners like the 
PSI9116 [6]. A linear calibration routine for all 
channels is applied inside the base class, any other 
calibration curve has to be implemented inside the 
specific sensor class. 

Classes contained in the computations package 
work similar like the sensors and are used to perform 
any kind of online computations accessing the latest 
acquired sensor readings. Currently, the package 
implements several computations typically used in 
turbomachinery applications (see section below), 
but computations for any other kind of application 
are possible. Due to the persistence of the 
computation class instances, it is also possible to 
store data between different processing cycles, as 
needed to implement filters. 

The communication package contains 
implementations of communication protocols which 
are not part of the basic Python installation. 
Currently, it holds an implementation of the Modbus 
RTU protocol [7] over different communication 
interfaces. 

Finally, utility classes and functions which are 
used inside the sensor and computation classes are 
placed in utils. These are functions to convert 
engineering units, fluid property classes for an ideal 
gas and humid air, statistical methods, etc. 

 

 
Figure 2: Software structure of PythonDAQ 

A measurement application is set up by creating 
a setup script in Python. First, an instance of the 
DataServer class is created. Then, all sensors are 
defined by creating the appropriate class instances 
and setting their respective properties. The sensors 
are assigned to the server with the addSensor()-
method. The same procedure is repeated for online 
computations. As last step, the data logging and 
measurement triggering is defined before calling the 
server’s start()-method. The script is called from a 
Python console returning as soon as all setup was 
successful and the acquisition cycle is running. The 
application is then running in the background. This 

enables using the same Python console for manually 
triggering measurements or other tasks. In order to 
stop the program, the server’s stop()-method is 
called. Figure 3 shows a simple server setup 
containing one sensor and data logging in the CSV 
format. 

 

 
Figure 3: Setup file for a basic server 

On the client-side, especially the 
VisualizationClient is worth mentioning. It is a GUI 
application that allows connecting to the server and 
visualizing live data as text or in different kinds of 
graphs (time series, XY graphs, etc.). The graphical 
user interface is implemented using the PyQt5 
library [8]. 

For the postprocessing of measurement data, 
two packages exist: The postprocessing package 
contains routines for the reduction of data (cutting, 
statistical evaluation), the combination of data 
(combining single point measurements), as well as 
postprocessing routines for aerodynamic probes. 
Furthermore, plot routines are contained in this 
package. All classes and routines can be used from a 
postprocessing script. It is still written manually for 
the specific measurement task, but due to the usage 
of predefined classes, the amount of code in the 
script is far less than writing a complete 
postprocessing procedure from scratch. 

The DataViewer is a PyQt5-based application to 
visualize recoded measurement data. It is intended 
that the program will be extended to a full 
postprocessing tool incorporating the routines from 
the postprocessing package. 

CURRENT STATE OF DEVELOPMENT AND 
LIMITATIONS 

The implementation of PytonDAQ is not 
finished yet, thus still undergoing continuous 
development. The most recent stable release of the 
software can be downloaded from the repository at 
[9]. 

To the current date, a synchronous 
implementation of the data server is completed and 

#!/usr/bin/env python3 
# -*- coding: utf-8 -*- 
 
from dataserver import DataServer 
from sensors import SensorSim 
 
# Initialize the data server 
server = DataServer() 
 
# Initialize a simulation sensor 
sensor_1 = SensorSim() 
 
# Add the sensor to the data server 
server.addSensor(sensor_1) 
 
# Configure a permanently writing logfile 
server.addWriter("logfiles/logfile.csv") 
 
# Start the data server 
server.start() 
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ready for usage. Synchronous implementation 
means that the sensors are polled for data, one at a 
time, before starting the computations one by one. 
This procedure is perfectly fine for applications with 
a limited number of sensors or if the actual execution 
time is far less than the desired cycle time. 

Most of the sensors with digital communication 
interface respond within a few milliseconds after the 
request. Anyway, the communication latency of 
sensors in large turbomachinery test setups can sum 
up to a level which is not acceptable anymore. This 
observation is consistent with the general statements 
given in ([1] pg. 12). Due to the fact that most of the 
overall execution time is spent waiting for the 
sensors to respond, parallelization is the way to 
overcome this issue. Therefore, an improved 
implementation of the DataServer will be 
implemented in the future. The idea is to send the 
request command to all sensors first and then wait 
for the responses to come in via the communication 
interfaces. The latency of the slowest sensor is still 
limiting the overall execution time, but the waiting 
time is spent in parallel and thus, not adding up 
anymore. Such a procedure can be implemented 
using Python’s asyncio package [10]. 

Online computations still need to be executed in 
series due to the fact that one computation may 
require the results of a previous one. Anyway, even 
in large setups, the computations take far less time 
than the sensor communication as can be seen for the 
FRANCC test case shown below. 

Per design, the current version of PythonDAQ 
is limited to one rate of the whole measurement and 
processing cycle. For the application in 
turbomachinery test rigs, there are three scenarios 
where this limitation may be problematic: 

1. There is one single sensor with a high 
latency limiting the acquisition rate of the 
whole setup. 

2. A higher acquisition rate is needed for a 
few sensors of the setup. 

3. It is intended to acquire and process data 
from high frequency measurements (more 
than 100 Hz). 

The first scenario can be resolved by wrapping 
the specific sensor instance inside a new periodic 
thread running at lower acquisition rates. The 
upsampling to the overall cycle rate can be done 
applying a sample-and-hold procedure. A wrapper 
class for handling this scenario will be implemented 
in the future. 

The second scenario is more complex because 
it involves downsampling the data and – which is 
even more problematic – requires a separated 
routine to store the measurement data at the higher 
rate. Thus, it is subject to future development. 

The third scenario involves handling very high 
amount of data and thus, needs blockwise data 
processing, buffering and special precautions 
against data loss. Therefore, it is currently not 

planned to support the acquisition of high frequency 
measurements within PythonDAQ. 

The implementation of sensor classes is 
complete and ready for usage. Anyway, if new types 
of sensors are needed for a specific test rig, these can 
be added to the sensors package at any time. Please 
refer to the source code [9] for a complete list of the 
currently supported sensor types. 

The computations currently count, among 
others, with a number of computations especially 
designed for turbomachinery test rigs: [11] 

• CorrectedPressures computes the absolute 
pressures of sensors adding the sensor 
readings to a given reference pressure or 
reference pressure sensor. Furthermore, the 
effects of geodetic pressure differences 
between the measurement positions and 
sensor positions are compensated. 

• Rake is a class to handle data from pressure 
and temperature measurement rakes as they 
are typically used in the inlet and outlet of 
turbomachinery test rigs [2]. 

• CompressorLevel computes averaged flow 
quantities at one stage of a turbomachinery 
test rig. 

• Compressor is used for overall operating 
data of a whole compressor like the total 
pressure ratio, reduced speed and 
massflow, among others. The outputs of 
this computation are required to determine 
the operating point of the machine. 

• DimensionlessCoefficients computes 
overall dimensionless quantities of the 
compressor like the flow and work 
coefficient. 

The VisualizationClient currently features a 
structured overview of all available channels, the 
possibility to display data as numerical values as 
well as plotting data over time or comparing two 
channels in a XY-plot. At the moment of writing this 
publication, the possibilities to customize the plots 
are still limited to the scaling of the axes. In the near 
future, there will be the possibility to choose the plot 
color and line style, customizing the legend and 
plotting data from a CSV file. This last feature is 
especially useful to display reference data from a 
previous test run or from numerical simulations and 
observe any differences during the test. 

The DataViewer currently just features plotting 
the measured data, but will be extended to a full 
postprocessing tool at a later point of development. 

TEST AT THE LOW-SPEED COMPRESSOR 
TEST RIG “FRANCC” 

After discussing the principles of the software, 
an application at the low-speed compressor test rig 
FRANCC at the Chair of Turbomachinery and Flight 
Propulsion, Technical University of Munich, is now 
presented and discussed. 
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The DataServer is installed on a PC running on 
Debian, being connected to the sensors which count 
with a digital data output. The total number of 
physical channels is 359. Table 1 shows the 
distribution of the channels on the individual type of 
measurement devices. 
 
Table 1: Physical measurement channels 

Type of Sensor # of Devices Total # of 
Channels 

Pressure 16 308 
Temperature 2 30 
Massflow 1 10 
Torque 1 6 
Humidity 1 4 
Speed 1 1 
Total 22 359 

 
From the physical measurements, live 

computations are made as discussed above, adding 
355 computed channels, which results in a total of 
714 channels. Table 2 shows that the majority of 
computed channels come from the pressure 
referencing and correction, whereas calculating 
turbomachinery-related operating values is the 
minor part. 
 
Table 2: Computed channels 

Type of 
Computation 

# of Class 
Instances 

Total # of 
Channels 

CorrectedPressures 27 257 
Rake 6 60 
CompressorLevel 2 16 
Compressor 1 18 
Dimensionless-
Coefficiens 

1 4 

Total 37 355 
 

The server works with a loop/cycle time of 1 s, 
but only approx. 450 ms are spent in active state, i.e., 
data acquisition and processing. The data acquisition 
takes most of the time with approx. 430 ms, whereas 
the online computations and data storage take only 
approx. 20 ms. A permanently active logfile in CSV 
or HDF5 format is used to capture the entire test run. 
Additionally, measurements of 30 samples each are 
taken by manual triggering when measuring steady-
state operating points. 

For the traversing of aerodynamic probes, the 
in-house developed program PythonDAQ-
TraverseControl is used. This program controls the 
whole probe movement process according to a 
predefined traversing grid. TraverseControl 
connects with the data acquisition via a TCP/IP 
connection, triggering a measurement of defined 
number of samples at each traversing point. The 
connection is enabled by activating the 
TriggerServer feature inside PythonDAQ. 

In order to display live data to the operators of 
the test rig, the VisualizationClient is used on a 
different machine which is located in the rig’s 
control room. It is running on Ubuntu Desktop. 
Figure 4 shows the main parts of a typical 
turbomachinery visualization containing exact 
textual data output for the compressor’s operating 
point (corrected massflow, total pressure ratio, 
corrected speed in percent of design speed and the 
polytropic efficiency). The total pressure ratio is 
shown also in a graph plotted over the corrected 
massflow. 
 

 
Figure 4: VisualizationClient showing operating data of 
the compressor test rig 

The relatively low sampling rate of currently 1 s 
is suitable for all steady-state measurements. 
Anyway, for taking measurements with 
aerodynamic probes, this may be a problematic 
limitation: In order to statistically analyze 
measurement data assuming a normal distribution of 
data points (considering 95% point of Student’s t-
distribution t95»2.0), one measurement at one 
specific position of the probe should be repeated at 
least 30 times ([2] pg. 38). This results in 30 seconds 
+ movement time + settling time for each position at 
which the probe is measuring ([2] pg. 65). For the 
analysis of the flow field inside a turbomachine, a 
relatively fine measurement grid is needed, resulting 
in a high number of probe positions and a very high 
overall measurement time considering the low data 
rate. If the acquired number of samples is reduced, 
the measurement time is decreased, but the level of 
confidence is decreased as well (cf. [12] Annex G). 
It has to be decided individually, whether the 
decreased level of confidence is tolerable or not. 
This explains, why the development of parallel data 
acquisition, as discussed in the previous chapter, will 
be the focus in the near future. 

COMMERCIAL DAQ SOLUTIONS 
The capabilities and the case setup of 

PythonDAQ is now compared with two commercial 
DAQ solutions, namely LabVIEW by National 
Instruments [13] and DASYLab by National 
Instruments/ measX [14]. 

LabVIEW is a graphical programming 
environment specialized on measurement data 



XXVI Biennial Symposium on Measuring Techniques in Turbomachinery 
Transonic and Supersonic Flow in Cascades and Turbomachines 

 

6  Pisa, Italy 
 28 – 30 September 2022 

acquisition. The software is very common among 
the teaching and research in universities. Function 
and class libraries exist inside the environment for 
the DAQ hardware provided by National 
Instruments. Furthermore, many vendors of sensors 
with digital data output provide libraries to use their 
hardware within a LabVIEW program which frees 
the user from implementing communication 
protocols and raw data conversion. Another 
advantage is that graphical user interfaces are easy 
and fast to implement. This makes LabVIEW the 
first choice in many labs. [13] 

The drawback is that LabVIEW is a 
programming environment and not a ready-to-use 
DAQ system, thus, the backbone of a DAQ solution 
(DAQ loop as described above) has to be 
implemented from scratch for each specific 
measurement task. Due to the graphical 
programming, adding or removing features to an 
existing program can easily end in messy code if no 
precautions are taken. 

DASYLab on the other hand is a ready-to-use 
DAQ solution. For the data input, many standard 
protocols are already implemented. Furthermore, 
there is full support for the hardware by National 
Instruments and many other vendors of DAQ 
hardware. A measurement application can be set up 
in a graphical environment from predefined blocks 
for the used hardware, visualization and data 
storage. For hardware which is not supported out of 
the box, custom blocks can be created using Python 
programming language. [14] 

The advantage of DASYLab compared to 
LabVIEW is that it is especially designed for DAQ 
applications, thus, the DAQ loop control does not 
have to be implemented manually. Furthermore, 
visualizations can be easily created. The price of 
approx. 1800€ for the full license [15] is relatively 
low for a commercial DAQ solution. Disadvantages 
are that generally no postprocessing and no online 
processing routines for the needs in turbomachinery 
applications are available in DASYLab. As a result, 
there is again the need for custom programming. 
Also, the user is limited to the Windows operating 
system. 

There is numerous other commercial DAQ 
software of which the majority is designed to work 
with the vendor’s own hardware. Thus, they are not 
suited for a highly heterogenous measurement setup 
as most commonly encountered in turbomachinery 
test rigs. 

COMPARISON WITH INDUSTRY SOLUTION 
Now, the capabilities of PythonDAQ are 

compared with the industrial DAQ solution used by 
a major aero-engine manufacturer at their 
turbomachinery test rigs. 

The DAQ system consists of four major parts: 
The raw-data acquisition, main program, high-speed 
acquisition and the visualization. All parts are 

distributed along different computers running on 
Windows operating system. 

The raw-data server acquires the data from all 
sensors with digital data output at a regular rate. The 
data is then written to a permanently writing logfile 
as well as made accessible via network. In contrast 
to PythonDAQ, no calibration and data conversion 
to SI unit is performed inside this part of the system. 
The configuration is made either directly using a 
graphical user interface or indirectly via 
configuration tables. 

The main program handles all the online 
computations. It accesses the data from the network, 
applies computations and then publishes the data 
again on the network. This part performs 
computations in the following steps: As the first 
step, data is transformed to the correct engineering 
(SI) units by using unit conversion formulae and 
calibration charts for the specific measurement 
device. Reference pressures from the reference 
sensors can be added to differential measurements in 
order to obtain the absolute pressure at a specific 
measurement position. 

As second step, sections inside the 
turbomachinery are defined for calculating average 
pressures, temperatures, etc. The section can consist 
of different types of probes. Also, different types of 
averages can be selected. 

As third step, performance data is calculated 
considering the whole turbomachinery or just single 
stages. There is also the possibility to integrate user-
defined calculations inside the program. All raw and 
computed data is written to a logfile providing 
redundancy to the raw-data acquisition logfile. 
Steady-state average values can be recorded over a 
predefined period of time. 

Up to this point, the capabilities of the industry 
solution are very similar to the current 
implementation of PythonDAQ. Some additional 
features show the long development process the 
industry solution has gone through: 

All configurations for the industry solution are 
made from a GUI being able to check and visualize 
the configuration while making changes. In contrast, 
PythonDAQ uses a Python setup file which has the 
advantages of being easily traceable by tools like git 
and being robust to further development. Anyway, 
editing a setup script manually is not that intuitive as 
using a GUI and is also riskier to configuration 
mistakes. 

Inside the main program, reference conditions 
can be defined. While the test is running, the data is 
constantly compared to these reference conditions in 
terms of absolute values as well as in observing 
changing rates. This makes it easy to assure keeping 
the machine in steady-state and repeatable 
conditions. Such a feature is not yet implemented in 
PythonDAQ.  

Furthermore, the main program has the 
possibility to connect to a database, where all 
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steady-state measurement points are stored together 
with different user-defined events. This 
automatically creates a logbook-style record of the 
whole test campaign making postprocessing and 
analysis easy and comprehensive. 

Lastly, there is the possibility to re-do all 
computations of a whole test (single data point up 
the whole logfile), which may be necessary e.g., 
when correcting a calibration error in one of the 
measurement devices. 

The high-speed data acquisition is capable of 
collecting data from vibration sensors, unsteady 
pressure sensors, etc. at high rates. Inside this 
program, online computations like calibration, 
checks and a highly elaborated set of signal 
processing and analysis routines are available. The 
data is logged to binary files and provided at low 
data rates via network for further usage inside the 
main program or visualization. As discussed above, 
high-speed data acquisition is intentionally left out 
of PythonDAQ, but the data from such a system can 
be still fed into a setup via OPC UA, Modbus TCP 
or any other digital data connection at low data rates. 

As last part of the industry solution, the 
visualization is now discussed: The visualization 
tool is capable of connecting to multiple data ports 
of online data like the raw-data server, the high-
speed data acquisition and the main program. Also, 
offline data from pre-recorded data files and from 
the previously mentioned data base can be 
visualized, making it a very universal tool. The data 
is visualized either as numeric values, as time series, 
XY plots comparing two channels, and in 2D profile 
and contour plots taking into account the geometry 
of the test vehicle. Compared to the industry 
solution, the VisualizationClient of PythonDAQ is 
just used for online visualization and still counts 
with less possibilities. Especially plots taking into 
account the geometry (2D profiles and contours) are 
not implemented yet. 

As overall view it can be seen that the 
acquisition and processing possibilities of 
PythonDAQ are comparable to the industry solution. 
Features that are missing for the individual 
measurement task can be easily added due to the 
modular structure. The graphical setup makes the 
industry solution more intuitive to use and more 
robust against failures and misconfiguration. Also, 
the possibilities for visualization are more 
developed. 

One major difference can be seen in the 
structure of the different programs. PythonDAQ is 
strongly object-oriented storing all relevant 
information of a sensor (position, probe type, …) 
inside the sensor’s class instance. All computations 
can access this information through the program 
which results in a more centralized overall program 
structure. Instead, the industry solution is dataflow-
oriented so that the raw-data acquisition only sees 
the sensor’s communication interface. The main 

program instead just uses the data from the tag code 
on the network interface not caring about the source 
of data or the sensor any more. 

CONCLUSION AND OUTLOOK 
The measurement data acquisition and 

processing software PythonDAQ is introduced in 
this paper. At the current stage of development, it 
contains all features necessary to be used at 
turbomachinery test rigs like the low-speed 
compressor FRANCC. The data acquisition, online 
computation and data storage capabilities are 
running stable and reliable. A visualization tool 
allows the monitoring of measured and computed 
values throughout the test. A graphical viewer for 
data analysis as well as basic postprocessing 
routines exist. 

PythonDAQ is still undergoing continuous 
development. The next features to be integrated into 
the software are: 

• A more elaborated error handling and 
logging to improve the robustness against 
misconfiguration or hardware failures. 

• Parallelization of the data acquisition using 
asyncio. 

• Improving the capabilities of the 
VisualizationClient, especially enabling 
more customization for graphical display 
of data. Adding the possibility to use a pre-
configuration avoids setting up the 
environment at each program start. 

• Enhancing the postprocessing capabilities 
to different kinds of aerodynamic probes. 

• Extending the DataViewer to a full 
postprocessing tool. 

 
All developments reaching a stable state will be 

published at the online repository of the software at 
[9]. 
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