
XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

1 Pisa, Italy
 28 – 30 September 2022

PYTHONDAQ – A PYTHON BASED MEASUREMENT DATA ACQUISITION AND
PROCESSING SOFTWARE

Daniel Jäger1
Technical University of Munich

TUM School of Engineering and Design
Chair of Turbomachinery and Flight Propulsion

Volker Gümmer
Technical University of Munich

TUM School of Engineering and Design
Chair of Turbomachinery and Flight Propulsion

ABSTRACT
This paper introduces PythonDAQ, an open-

source Python package for measurement data
acquisition, visualization, storage, and post-
processing. The code is capable of acquiring
measurement data from any sensor with digital data
output, performs online calculations, and stores the
measured and computed data. A client for live data
visualization and tools for postprocessing are also
contained in the software package. First, the code is
introduced explaining the software architecture and
the currently implemented features. Then, the
usability is demonstrated by an application at the
low-speed compressor test rig FRANCC. As last
step, comparisons between PythonDAQ and
commercial DAQ solutions, as well as the data
acquisition software of a major aero-engine
manufacturer are made.

NOMENCLATURE
CFD Computational fluid dynamics
CGNS CFD general notation system
CSV Comma-separated values
DAQ Data acquisition
FRANCC Fundamental research and new

concepts compressor
GUI Graphical user interface
HDF Hierarchical data format
MDF Measurement data format
OPC UA Open platform communications –

unified architecture
SI Système international d’unités

INTRODUCTION
Measurement setups for turbomachinery test

rigs generally have a high number of channels,
whereas, in modern setups, most of them come
directly from sensors with digital data output, the
rest indirectly from A/D-converters. The
measurement data is then transferred to computers
for further processing. As raw sensor data is often
not directly human-interpretable, characteristic

1 Corresponding author. E-Mail: daniel.jaeger@tum.de

turbomachinery quantities are computed live from
the sensor readings. The data is stored and displayed
to the user as the last step.

To fulfill these tasks, the designer of a test rig
has the following two options: Either use a specially
designed commercial data acquisition software,
which is generally expensive, or implement its own
code. The latter is not a trivial task resulting in a
large personal workload.

With this paper, a shortcut to the development
process is provided. PythonDAQ is an open-source
software package that intends to cover the whole
workflow from data acquisition and storage until
postprocessing. The software is designed in a
modular way, such that different measurement
setups can be built from an existing catalog of
classes, avoiding starting from scratch. Features are
kept as generally usable as possible, but focus is set
on turbomachinery applications.

DATA ACQUSITION AND PROCESSING
CYCLE AND POSTPROCESSING

To derive the software layout, the general data
acquisition and processing cycle and the
postprocessing workflow are discussed in this
section. First of all, sensors are set up to correct
operating parameters. The data acquisition itself is
normally set up as a cyclic task, who’s loop is started
after the setup. The tasks inside the loop are shown
in Figure 1 and can be divided into four steps:

First, the raw data is acquired from sensors via
digital communication interfaces like Ethernet or
serial interfaces with different kinds of protocols.

Then, sensor corrections are made - most
commonly with a linear calibration applying gain
and offset. Sensors that have a non-linear behavior,
e.g., resistive temperature sensors, ([1] Sec. 3.2)
should be compensated using non-linear calibration
curves derived from multipoint calibration to
minimize the error.

In some applications, the calibrated readings are
enough to fulfill the measurement task. This

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

2 Pisa, Italy
 28 – 30 September 2022

especially applies for simple measurement
configurations or setups where no online
visualization is needed, so that further data reduction
is done in postprocessing steps only. In more
complex setups, the calibrated sensor readings are
often not directly human-interpretable. For example,
the pressure readings in turbomachinery tests are
normally measured relative to ambient pressure,
where the relative pressure only is no clear
indication of the operating point of the machine.
Instead, several steps of computations are needed to
derive characteristic operating data like the
corrected speed of the machine, corrected massflow
as well as pressure and temperature ratios ([2],
pg. 18ff). Furthermore, dimensionless quantities
like Reynold’s and Mach numbers and flow and
work coefficients can be computed. The online
computation and visualization of this data is needed
for the operation of the test rig. The steps of
computations will be called online computations
throughout the rest of this paper to distinguish them
from computations made during postprocessing.

As last step of the cycle, the measured data is
stored for postprocessing and visualized in live to
the operators of the test rig.

Figure 1: Steps performed during one DAQ cycle

After completing a measurement, the data is
postprocessed. The basic steps of postprocessing in
turbomachinery applications are: (cf. [2])

• Reading measurement data files.
• Statistically evaluating the data, e.g., by

computing mean values and standard
deviations.

• Computing further quantities from the
acquired sensor readings and online
computation results.

• Combining different measurements, e.g.,
spatial averaging of data from probe
measurements.

• Plotting data as time series, XY plots,
contour plots, etc.

SOFTWARE ARCHITECTURE
After discussing the principal measurement

workflow in the previous section, the software

architecture of PythonDAQ is now derived. As the
name suggests, PythonDAQ is a pure Python
software package which consists of several sub-
packages and modules. They are discussed in detail.
During development, care is taken to keep the
number of dependencies at a minimum. All parts of
the software are implemented in a platform-
independent way, so that PythonDAQ can
theoretically be used on any platform and operating
system. Up to now, the software has been tested on
Debian, Ubuntu, MacOS and Windows.

Generally, the software is designed as a server-
client architecture. The server handles the whole
data acquisition and processing cycle except the
visualization. Data is continuously made accessible
via an OPC UA server. The visualization is
implemented as a client accessing the live data from
the server. The idea behind this split is that the server
application can run on a computer which is placed
physically close to the device-under-test enabling
the usage of serial communication or PC-based
DAQ cards. The client on the other hand is intended
to run on a PC or Laptop inside the test rig’s control
room. See ([1] Ch. 1) for a discussion of different
system layouts.

Postprocessing applications are detached from
the server-client architecture and can either be used
in an automated way on the server or manually on
any other computer.

Figure 2 shows the software layout of
PythonDAQ splitting up the overall software
package into the server-side and client and
applications. This split is just made for better
understanding, there are cross-connections between
several sub-packages of the two sides. Python
packages are shown in green color whereas specific
GUI applications are shown in yellow.

The dataserver package is the core of the server
side. It includes the DataServer class which
manages the data acquisition and processing cycle.
As cycle timer, the BackgroundScheduler of the
Advanced Python Scheduler (apscheduler [3])
package is used. The DataServer also starts the
OPC UA server, implemented using the python-
opcua package [4], enabling remote access to the
measurement data. The dataserver package also
features a trigger server which allows triggering
measurements of a predefined number of data
points. This feature is especially useful for the
traversing of aerodynamic probes.

The datastorage package contains several
classes to write and read measurement data files in
different file formats. Currently, writing
measurement data in CSV and HDF5 file format is
supported. Furthermore, traversing data can be
mapped into a CGNS file which enables the usage
of CFD postprocessing tools like ParaView [5]. For
the postprocessing of data files from commercial
DAQ systems, a reader class for MDF4 data files is
implemented.

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

3 Pisa, Italy
 28 – 30 September 2022

The sensors package contains classes for all
sensors which are used for the specific measurement
task. Currently, all sensors of the FRANCC
compressor test rig (see section below) are
implemented, but due to legal reasons (e.g.,
proprietary communication protocols), not all of
them are published. The sensor classes inherit from
a base sensor class which provides a uniform
interface to the DataServer. Each sensor device can
consist of multiple channels as this is the usual case
for multichannel pressure scanners like the
PSI9116 [6]. A linear calibration routine for all
channels is applied inside the base class, any other
calibration curve has to be implemented inside the
specific sensor class.

Classes contained in the computations package
work similar like the sensors and are used to perform
any kind of online computations accessing the latest
acquired sensor readings. Currently, the package
implements several computations typically used in
turbomachinery applications (see section below),
but computations for any other kind of application
are possible. Due to the persistence of the
computation class instances, it is also possible to
store data between different processing cycles, as
needed to implement filters.

The communication package contains
implementations of communication protocols which
are not part of the basic Python installation.
Currently, it holds an implementation of the Modbus
RTU protocol [7] over different communication
interfaces.

Finally, utility classes and functions which are
used inside the sensor and computation classes are
placed in utils. These are functions to convert
engineering units, fluid property classes for an ideal
gas and humid air, statistical methods, etc.

Figure 2: Software structure of PythonDAQ

A measurement application is set up by creating
a setup script in Python. First, an instance of the
DataServer class is created. Then, all sensors are
defined by creating the appropriate class instances
and setting their respective properties. The sensors
are assigned to the server with the addSensor()-
method. The same procedure is repeated for online
computations. As last step, the data logging and
measurement triggering is defined before calling the
server’s start()-method. The script is called from a
Python console returning as soon as all setup was
successful and the acquisition cycle is running. The
application is then running in the background. This

enables using the same Python console for manually
triggering measurements or other tasks. In order to
stop the program, the server’s stop()-method is
called. Figure 3 shows a simple server setup
containing one sensor and data logging in the CSV
format.

Figure 3: Setup file for a basic server

On the client-side, especially the
VisualizationClient is worth mentioning. It is a GUI
application that allows connecting to the server and
visualizing live data as text or in different kinds of
graphs (time series, XY graphs, etc.). The graphical
user interface is implemented using the PyQt5
library [8].

For the postprocessing of measurement data,
two packages exist: The postprocessing package
contains routines for the reduction of data (cutting,
statistical evaluation), the combination of data
(combining single point measurements), as well as
postprocessing routines for aerodynamic probes.
Furthermore, plot routines are contained in this
package. All classes and routines can be used from a
postprocessing script. It is still written manually for
the specific measurement task, but due to the usage
of predefined classes, the amount of code in the
script is far less than writing a complete
postprocessing procedure from scratch.

The DataViewer is a PyQt5-based application to
visualize recoded measurement data. It is intended
that the program will be extended to a full
postprocessing tool incorporating the routines from
the postprocessing package.

CURRENT STATE OF DEVELOPMENT AND
LIMITATIONS

The implementation of PytonDAQ is not
finished yet, thus still undergoing continuous
development. The most recent stable release of the
software can be downloaded from the repository at
[9].

To the current date, a synchronous
implementation of the data server is completed and

#!/usr/bin/env python3
-*- coding: utf-8 -*-

from dataserver import DataServer
from sensors import SensorSim

Initialize the data server
server = DataServer()

Initialize a simulation sensor
sensor_1 = SensorSim()

Add the sensor to the data server
server.addSensor(sensor_1)

Configure a permanently writing logfile
server.addWriter("logfiles/logfile.csv")

Start the data server
server.start()

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

4 Pisa, Italy
 28 – 30 September 2022

ready for usage. Synchronous implementation
means that the sensors are polled for data, one at a
time, before starting the computations one by one.
This procedure is perfectly fine for applications with
a limited number of sensors or if the actual execution
time is far less than the desired cycle time.

Most of the sensors with digital communication
interface respond within a few milliseconds after the
request. Anyway, the communication latency of
sensors in large turbomachinery test setups can sum
up to a level which is not acceptable anymore. This
observation is consistent with the general statements
given in ([1] pg. 12). Due to the fact that most of the
overall execution time is spent waiting for the
sensors to respond, parallelization is the way to
overcome this issue. Therefore, an improved
implementation of the DataServer will be
implemented in the future. The idea is to send the
request command to all sensors first and then wait
for the responses to come in via the communication
interfaces. The latency of the slowest sensor is still
limiting the overall execution time, but the waiting
time is spent in parallel and thus, not adding up
anymore. Such a procedure can be implemented
using Python’s asyncio package [10].

Online computations still need to be executed in
series due to the fact that one computation may
require the results of a previous one. Anyway, even
in large setups, the computations take far less time
than the sensor communication as can be seen for the
FRANCC test case shown below.

Per design, the current version of PythonDAQ
is limited to one rate of the whole measurement and
processing cycle. For the application in
turbomachinery test rigs, there are three scenarios
where this limitation may be problematic:

1. There is one single sensor with a high
latency limiting the acquisition rate of the
whole setup.

2. A higher acquisition rate is needed for a
few sensors of the setup.

3. It is intended to acquire and process data
from high frequency measurements (more
than 100 Hz).

The first scenario can be resolved by wrapping
the specific sensor instance inside a new periodic
thread running at lower acquisition rates. The
upsampling to the overall cycle rate can be done
applying a sample-and-hold procedure. A wrapper
class for handling this scenario will be implemented
in the future.

The second scenario is more complex because
it involves downsampling the data and – which is
even more problematic – requires a separated
routine to store the measurement data at the higher
rate. Thus, it is subject to future development.

The third scenario involves handling very high
amount of data and thus, needs blockwise data
processing, buffering and special precautions
against data loss. Therefore, it is currently not

planned to support the acquisition of high frequency
measurements within PythonDAQ.

The implementation of sensor classes is
complete and ready for usage. Anyway, if new types
of sensors are needed for a specific test rig, these can
be added to the sensors package at any time. Please
refer to the source code [9] for a complete list of the
currently supported sensor types.

The computations currently count, among
others, with a number of computations especially
designed for turbomachinery test rigs: [11]

• CorrectedPressures computes the absolute
pressures of sensors adding the sensor
readings to a given reference pressure or
reference pressure sensor. Furthermore, the
effects of geodetic pressure differences
between the measurement positions and
sensor positions are compensated.

• Rake is a class to handle data from pressure
and temperature measurement rakes as they
are typically used in the inlet and outlet of
turbomachinery test rigs [2].

• CompressorLevel computes averaged flow
quantities at one stage of a turbomachinery
test rig.

• Compressor is used for overall operating
data of a whole compressor like the total
pressure ratio, reduced speed and
massflow, among others. The outputs of
this computation are required to determine
the operating point of the machine.

• DimensionlessCoefficients computes
overall dimensionless quantities of the
compressor like the flow and work
coefficient.

The VisualizationClient currently features a
structured overview of all available channels, the
possibility to display data as numerical values as
well as plotting data over time or comparing two
channels in a XY-plot. At the moment of writing this
publication, the possibilities to customize the plots
are still limited to the scaling of the axes. In the near
future, there will be the possibility to choose the plot
color and line style, customizing the legend and
plotting data from a CSV file. This last feature is
especially useful to display reference data from a
previous test run or from numerical simulations and
observe any differences during the test.

The DataViewer currently just features plotting
the measured data, but will be extended to a full
postprocessing tool at a later point of development.

TEST AT THE LOW-SPEED COMPRESSOR
TEST RIG “FRANCC”

After discussing the principles of the software,
an application at the low-speed compressor test rig
FRANCC at the Chair of Turbomachinery and Flight
Propulsion, Technical University of Munich, is now
presented and discussed.

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

5 Pisa, Italy
 28 – 30 September 2022

The DataServer is installed on a PC running on
Debian, being connected to the sensors which count
with a digital data output. The total number of
physical channels is 359. Table 1 shows the
distribution of the channels on the individual type of
measurement devices.

Table 1: Physical measurement channels

Type of Sensor # of Devices Total # of
Channels

Pressure 16 308
Temperature 2 30
Massflow 1 10
Torque 1 6
Humidity 1 4
Speed 1 1
Total 22 359

From the physical measurements, live

computations are made as discussed above, adding
355 computed channels, which results in a total of
714 channels. Table 2 shows that the majority of
computed channels come from the pressure
referencing and correction, whereas calculating
turbomachinery-related operating values is the
minor part.

Table 2: Computed channels

Type of
Computation

of Class
Instances

Total # of
Channels

CorrectedPressures 27 257
Rake 6 60
CompressorLevel 2 16
Compressor 1 18
Dimensionless-
Coefficiens

1 4

Total 37 355

The server works with a loop/cycle time of 1 s,
but only approx. 450 ms are spent in active state, i.e.,
data acquisition and processing. The data acquisition
takes most of the time with approx. 430 ms, whereas
the online computations and data storage take only
approx. 20 ms. A permanently active logfile in CSV
or HDF5 format is used to capture the entire test run.
Additionally, measurements of 30 samples each are
taken by manual triggering when measuring steady-
state operating points.

For the traversing of aerodynamic probes, the
in-house developed program PythonDAQ-
TraverseControl is used. This program controls the
whole probe movement process according to a
predefined traversing grid. TraverseControl
connects with the data acquisition via a TCP/IP
connection, triggering a measurement of defined
number of samples at each traversing point. The
connection is enabled by activating the
TriggerServer feature inside PythonDAQ.

In order to display live data to the operators of
the test rig, the VisualizationClient is used on a
different machine which is located in the rig’s
control room. It is running on Ubuntu Desktop.
Figure 4 shows the main parts of a typical
turbomachinery visualization containing exact
textual data output for the compressor’s operating
point (corrected massflow, total pressure ratio,
corrected speed in percent of design speed and the
polytropic efficiency). The total pressure ratio is
shown also in a graph plotted over the corrected
massflow.

Figure 4: VisualizationClient showing operating data of
the compressor test rig

The relatively low sampling rate of currently 1 s
is suitable for all steady-state measurements.
Anyway, for taking measurements with
aerodynamic probes, this may be a problematic
limitation: In order to statistically analyze
measurement data assuming a normal distribution of
data points (considering 95% point of Student’s t-
distribution t95»2.0), one measurement at one
specific position of the probe should be repeated at
least 30 times ([2] pg. 38). This results in 30 seconds
+ movement time + settling time for each position at
which the probe is measuring ([2] pg. 65). For the
analysis of the flow field inside a turbomachine, a
relatively fine measurement grid is needed, resulting
in a high number of probe positions and a very high
overall measurement time considering the low data
rate. If the acquired number of samples is reduced,
the measurement time is decreased, but the level of
confidence is decreased as well (cf. [12] Annex G).
It has to be decided individually, whether the
decreased level of confidence is tolerable or not.
This explains, why the development of parallel data
acquisition, as discussed in the previous chapter, will
be the focus in the near future.

COMMERCIAL DAQ SOLUTIONS
The capabilities and the case setup of

PythonDAQ is now compared with two commercial
DAQ solutions, namely LabVIEW by National
Instruments [13] and DASYLab by National
Instruments/ measX [14].

LabVIEW is a graphical programming
environment specialized on measurement data

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

6 Pisa, Italy
 28 – 30 September 2022

acquisition. The software is very common among
the teaching and research in universities. Function
and class libraries exist inside the environment for
the DAQ hardware provided by National
Instruments. Furthermore, many vendors of sensors
with digital data output provide libraries to use their
hardware within a LabVIEW program which frees
the user from implementing communication
protocols and raw data conversion. Another
advantage is that graphical user interfaces are easy
and fast to implement. This makes LabVIEW the
first choice in many labs. [13]

The drawback is that LabVIEW is a
programming environment and not a ready-to-use
DAQ system, thus, the backbone of a DAQ solution
(DAQ loop as described above) has to be
implemented from scratch for each specific
measurement task. Due to the graphical
programming, adding or removing features to an
existing program can easily end in messy code if no
precautions are taken.

DASYLab on the other hand is a ready-to-use
DAQ solution. For the data input, many standard
protocols are already implemented. Furthermore,
there is full support for the hardware by National
Instruments and many other vendors of DAQ
hardware. A measurement application can be set up
in a graphical environment from predefined blocks
for the used hardware, visualization and data
storage. For hardware which is not supported out of
the box, custom blocks can be created using Python
programming language. [14]

The advantage of DASYLab compared to
LabVIEW is that it is especially designed for DAQ
applications, thus, the DAQ loop control does not
have to be implemented manually. Furthermore,
visualizations can be easily created. The price of
approx. 1800€ for the full license [15] is relatively
low for a commercial DAQ solution. Disadvantages
are that generally no postprocessing and no online
processing routines for the needs in turbomachinery
applications are available in DASYLab. As a result,
there is again the need for custom programming.
Also, the user is limited to the Windows operating
system.

There is numerous other commercial DAQ
software of which the majority is designed to work
with the vendor’s own hardware. Thus, they are not
suited for a highly heterogenous measurement setup
as most commonly encountered in turbomachinery
test rigs.

COMPARISON WITH INDUSTRY SOLUTION
Now, the capabilities of PythonDAQ are

compared with the industrial DAQ solution used by
a major aero-engine manufacturer at their
turbomachinery test rigs.

The DAQ system consists of four major parts:
The raw-data acquisition, main program, high-speed
acquisition and the visualization. All parts are

distributed along different computers running on
Windows operating system.

The raw-data server acquires the data from all
sensors with digital data output at a regular rate. The
data is then written to a permanently writing logfile
as well as made accessible via network. In contrast
to PythonDAQ, no calibration and data conversion
to SI unit is performed inside this part of the system.
The configuration is made either directly using a
graphical user interface or indirectly via
configuration tables.

The main program handles all the online
computations. It accesses the data from the network,
applies computations and then publishes the data
again on the network. This part performs
computations in the following steps: As the first
step, data is transformed to the correct engineering
(SI) units by using unit conversion formulae and
calibration charts for the specific measurement
device. Reference pressures from the reference
sensors can be added to differential measurements in
order to obtain the absolute pressure at a specific
measurement position.

As second step, sections inside the
turbomachinery are defined for calculating average
pressures, temperatures, etc. The section can consist
of different types of probes. Also, different types of
averages can be selected.

As third step, performance data is calculated
considering the whole turbomachinery or just single
stages. There is also the possibility to integrate user-
defined calculations inside the program. All raw and
computed data is written to a logfile providing
redundancy to the raw-data acquisition logfile.
Steady-state average values can be recorded over a
predefined period of time.

Up to this point, the capabilities of the industry
solution are very similar to the current
implementation of PythonDAQ. Some additional
features show the long development process the
industry solution has gone through:

All configurations for the industry solution are
made from a GUI being able to check and visualize
the configuration while making changes. In contrast,
PythonDAQ uses a Python setup file which has the
advantages of being easily traceable by tools like git
and being robust to further development. Anyway,
editing a setup script manually is not that intuitive as
using a GUI and is also riskier to configuration
mistakes.

Inside the main program, reference conditions
can be defined. While the test is running, the data is
constantly compared to these reference conditions in
terms of absolute values as well as in observing
changing rates. This makes it easy to assure keeping
the machine in steady-state and repeatable
conditions. Such a feature is not yet implemented in
PythonDAQ.

Furthermore, the main program has the
possibility to connect to a database, where all

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

7 Pisa, Italy
 28 – 30 September 2022

steady-state measurement points are stored together
with different user-defined events. This
automatically creates a logbook-style record of the
whole test campaign making postprocessing and
analysis easy and comprehensive.

Lastly, there is the possibility to re-do all
computations of a whole test (single data point up
the whole logfile), which may be necessary e.g.,
when correcting a calibration error in one of the
measurement devices.

The high-speed data acquisition is capable of
collecting data from vibration sensors, unsteady
pressure sensors, etc. at high rates. Inside this
program, online computations like calibration,
checks and a highly elaborated set of signal
processing and analysis routines are available. The
data is logged to binary files and provided at low
data rates via network for further usage inside the
main program or visualization. As discussed above,
high-speed data acquisition is intentionally left out
of PythonDAQ, but the data from such a system can
be still fed into a setup via OPC UA, Modbus TCP
or any other digital data connection at low data rates.

As last part of the industry solution, the
visualization is now discussed: The visualization
tool is capable of connecting to multiple data ports
of online data like the raw-data server, the high-
speed data acquisition and the main program. Also,
offline data from pre-recorded data files and from
the previously mentioned data base can be
visualized, making it a very universal tool. The data
is visualized either as numeric values, as time series,
XY plots comparing two channels, and in 2D profile
and contour plots taking into account the geometry
of the test vehicle. Compared to the industry
solution, the VisualizationClient of PythonDAQ is
just used for online visualization and still counts
with less possibilities. Especially plots taking into
account the geometry (2D profiles and contours) are
not implemented yet.

As overall view it can be seen that the
acquisition and processing possibilities of
PythonDAQ are comparable to the industry solution.
Features that are missing for the individual
measurement task can be easily added due to the
modular structure. The graphical setup makes the
industry solution more intuitive to use and more
robust against failures and misconfiguration. Also,
the possibilities for visualization are more
developed.

One major difference can be seen in the
structure of the different programs. PythonDAQ is
strongly object-oriented storing all relevant
information of a sensor (position, probe type, …)
inside the sensor’s class instance. All computations
can access this information through the program
which results in a more centralized overall program
structure. Instead, the industry solution is dataflow-
oriented so that the raw-data acquisition only sees
the sensor’s communication interface. The main

program instead just uses the data from the tag code
on the network interface not caring about the source
of data or the sensor any more.

CONCLUSION AND OUTLOOK
The measurement data acquisition and

processing software PythonDAQ is introduced in
this paper. At the current stage of development, it
contains all features necessary to be used at
turbomachinery test rigs like the low-speed
compressor FRANCC. The data acquisition, online
computation and data storage capabilities are
running stable and reliable. A visualization tool
allows the monitoring of measured and computed
values throughout the test. A graphical viewer for
data analysis as well as basic postprocessing
routines exist.

PythonDAQ is still undergoing continuous
development. The next features to be integrated into
the software are:

• A more elaborated error handling and
logging to improve the robustness against
misconfiguration or hardware failures.

• Parallelization of the data acquisition using
asyncio.

• Improving the capabilities of the
VisualizationClient, especially enabling
more customization for graphical display
of data. Adding the possibility to use a pre-
configuration avoids setting up the
environment at each program start.

• Enhancing the postprocessing capabilities
to different kinds of aerodynamic probes.

• Extending the DataViewer to a full
postprocessing tool.

All developments reaching a stable state will be

published at the online repository of the software at
[9].

ACKNOWLEDGMENTS
PythonDAQ is developed in the context of the

research project “Unsteady Tandem Flow”, funded
by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – 420268957 and the
FVV eV – 6013600 from 2020 until March 2022.

Furthermore, the Chair of Turbomachinery and
Flight Propulsion at Technical University of Munich
is acknowledged for the financial support during the
development time of PythonDAQ extending the
period of the project “Unsteady Tandem Flow”.

Lastly, the authors would like to thank all
developers of PythonDAQ. A full list of the
contributors is provided inside the software package
at [9].

REFERENCES
[1] Nawrocki, W. Measurement Systems and
Sensors. Second Edition. Norwood, MA: Artech
House 2016.

XXVI Biennial Symposium on Measuring Techniques in Turbomachinery
Transonic and Supersonic Flow in Cascades and Turbomachines

8 Pisa, Italy
 28 – 30 September 2022

[2] Advisory Group for Aerospace Research &
Development (AGARD). Recommended Practices
for Measurement of Gas Path Pressures and
Temperatures for Performance Assessment of
Aircraft Turbine Engines and Components.
AGARD-AR-245. Neuilly Sur Seine: AGARD
1990.

[3] Grönholm, A. Advanced Python Scheduler.
github.com/agronholm/apscheduler. Accessed on
2022-07-15.

[4] FreeOpcUa. Python-opcua.
github.com/FreeOpcUa/python-opcua. Accessed on
2022-07-15.

[5] Kitware Inc. ParaView. www.paraview.org.
Accessed on 2022-07-15.

[6] Measurement Specialties, Inc., a TE
Connectivity Company. Ethernet Intelligent
Pressure Scanner. 9116 NetScanner System.
Datasheet.
www.te.com/commerce/DocumentDelivery/DDEC
ontroller?Action=showdoc&DocId=Data+Sheet%7
F9116%7FA1%7Fpdf%7FEnglish%7FENG_DS_9
116_A1.pdf%7FCAT-SCS0002. Accessed on
2022-08-12.

[7] Modbus Organization, Inc. Modbus application
protocol specification V1.1b3. 2012.
www.modbus.org/docs/Modbus_Application_Proto
col_V1_1b3.pdf. Accessed on 2022-07-15.

[8] Riverbank Computing Limited. PyQt
Documentation v5.15.4.
www.riverbankcomputing.com/static/Docs/PyQt5/.
Accessed on 2022-07-15.

[9] Jäger, D., et. al. PythonDAQ-Public. Source
code repository for the public version of the
PythonDAQ project. gitlab.lrz.de/ltf-
experimentatoren/pythondaq-public.

[10] Python Software Foundation. Asyncio -
Asynchronous I/O.
docs.python.org/3/library/asyncio.html. Accessed
on 2022-08-12.

[11] Selmayr, L. M. Ausarbeitung und
Implementierung eines Systems zur Online-
Verarbeitung von Messdaten an einem
Turbomaschinenprüfstand. Term Paper (in
German). Garching: Technical University of
Munich 2022.

[12] Joint Committee for Guides in Metrology
(JCGM). JCGM 100:2008. Evaluation of
measurement data - Guide to the expression of

uncertainty in measurement. Corrected version
2010.

[13] National Instruments Corp. What is
LabVIEW? www.ni.com/en-gb/shop/labview.html.
Accessed on 2022-08-12.

[14] measX GmbH & Co. KG. DASYLab -
Versatile software for data acquisition.
www.measx.com/en/products/software/dasylab.htm
l. Accessed on 2022-08-12.

[15] BMC Solutions GmbH. DASYLab Mess-und
Steuersoftware. www.bmc.de/DASYLab-FULL.
Accessed on 2022-07-19.

