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ABSTRACT 
Reducing the instrumentation required to 
evaluate the performance of a turbomachine is 
essential to reduce intrusiveness error and to 
limit the cost of a measurement campaign. A 
data assimilation methodology based on 
Bayesian Inference is employed to reduce the 
required instrumentation effort. A numerical 
model is employed to provide an initial belief of 
the flow, that is then updated based on 
experimental observations. The developed 
methodology has been validated on analytical 
cases on which a thorough parametric study 
was also performed. Preliminary results on a 
low aspect ratio axial compressor stage show a 
good prediction of the corrected compressor 
map, as well as a good prediction of the inter-
row pressure ratio of the machine. 

  

INTRODUCTION 
With the trend of achieving higher pressure 

ratios, more compact machines are being designed, 

making turbomachinery components more sensitive 

to instrument intrusiveness in the flow. 

Non-intrusive experimental techniques, such as 

Particle Image Velocimetry (PIV) and Laser 

Doppler Velocimetry (LDV) are not easy to apply to 

turbomachines and are not of direct implementation 

in the industry. Probe intrusiveness in 

turbomachinery flows has been researched to assess 

the impact of the measurements on the aerodynamic 

design of the machines. Research has been 

conducted both in compressors (Sanders et al., 

2017), where Computational Fluid Dynamics (CFD) 

calculations show a probe influence on the wake 

leading to differences in the aerodynamic excitation, 

and turbines (Aschenbruck et al., 2015), where the 

probes reduce the wake magnitude in areas with 

high velocity gradients. Validation of CFD 

simulations with the use of multi-hole pressure 

probes that disturb the flow field becomes a issue to 

be wary upon.  

With this in mind, research and development of 

less intrusive experimental techniques is required to 

reduce the number of probes used throughout the 

machine and consequently diminish the influence of 

measurements in the flow, while maintaining high 

fidelity results, and reducing the costs associated 

with probes.  

Parallel to this need, an increased interest in 

data assimilation algorithms and their applications 

in fluid mechanics has been noticed. Their main 

advantage lies in the capability of coupling 

experimental measurements with numerical models. 

Particularly interesting, is the utilization of data 

assimilation with Bayesian inference applied to 

inverse problems beyond meteorological forecast 

and oceanography (Bannister, 2017).  

This trend towards data science provides the 

perfect opportunity to study a new approach to 

tackle probe intrusiveness in the flow field of a 

turbomachine, by developing of a new hybrid, less 

intrusive experimental technique, that employs data 

assimilation. This paper sets out to investigate the 

feasibility of data assimilation with Bayesian 

inference on a state-of-the-art compressor stage, 

which due to its blade height is affected by probe 

intrusiveness, by evaluating its global performance. 

Data assimilation performed with Bayesian 

inference combines all available knowledge about 

the studied system, where the available information 

is evaluated with probability functions (Dwight, 

2014). These methods are equivalent to solving a 

maximum likelihood estimate problem based on the 

Bayes theorem, which can be written as: 

 

𝑃(𝑀𝑜𝑑𝑒𝑙|𝐷𝑎𝑡𝑎) =
𝑃(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) ⋅ 𝑃(𝑀𝑜𝑑𝑒𝑙)

𝑃(𝐷𝑎𝑡𝑎)
 

 

where 𝑃(𝐷𝑎𝑡𝑎|𝑀𝑜𝑑𝑒𝑙) is called likelihood, 

matching both measured data and forward model in 

this case. The likelihood is estimated using a 

Bayesian inference method that is to be chosen and 

discussed below. 

𝑃(𝑀𝑜𝑑𝑒𝑙) is the prior distribution, in this case 

given by the forward model presented in the next 

section. This member of the equation represents the 

priori belief of the distribution of a certain quantity 

of interest. 

𝑃(𝐷𝑎𝑡𝑎) is the marginal likelihood. It is 

constant, since it is independent of the forward 

model used, being sometimes omitted from the 
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formula, since it is meant to normalize the obtained 

pdf. 

𝑃(𝑀𝑜𝑑𝑒𝑙|𝐷𝑎𝑡𝑎) is the posterior distribution, 

the result of the application of the data assimilation 

procedure with a Bayesian inference algorithm. This 

result is the posteriori, the updated belief, based on 

forward model and observed data.  

A Bayesian inference method is required. 

Various methods and consequent sub-variations are 

found in the literature: The Ensemble Kalman Filter 

(EnKF) (Evensen, 2003, 2010; Stordal et al., 2011), 

the Markov Chain Monte Carlo (MCMC) (Apte et 

al., 2007; Wikle & Berliner, 2007) and variational 

methods, in particular, the 4D-VAR (Jardak et al., 

2010; Lorenc, 2003; Penenko, 2009).  

The adaption of the EnKF for inverse problems 

(Iglesias, Law, & Stuart, 2013) was chosen for its 

simple formulation, which leads to a straightforward 

implementation. The fact that this method is 

gradient-free reduces the computational cost of the 

data assimilation process. The data assimilation 

update step is computed without a need to compute 

gradients, making it cost-effective when compared 

with gradient based methods. The downside of the 

algorithm, lies on the assumption that all the 

probability distributions are Gaussian, which is 

acceptable since literature shows that the algorithm 

can still provide acceptable results for other 

distributions (Sousa, García-Sánchez, & Gorlé, 

2018). 

The following sections of the present work 

include an introduction to the compressor stage test 

case of this work, followed by a thorough 

description of the proposed methodology, with 

special attention to the description of the Bayesian 

inference algorithm employed. The results show the 

capability of the methodology to predict within a 

confidence level the machine operating condition. 

Arguments towards the present approach are taken 

and conclusions are drawn about the possibility of 

the method to reduce the number of experimental 

measurements required to fully characterize the 

compressor stage. 

 

TEST CASE – H25 COMPRESSOR STAGE 
The test case of this paper is the LEMCOTEC H25 

test section. It is a single stage axial compressor 

designed to represent the last stage of a high pressure 

compressor for a high overall pressure ratio engine, 

being characterized by its low aspect ratio blade 

design with a blade height of 25 mm, achieving a 

total-to-total pressure ratio of 1.25 at design 

conditions.  

A cross section of the experimental setup of 

H25 stage is shown in Figure 1. Combined total 

pressure - total temperature rakes are deployed at 

measurement Planes 0 and 4, that correspond, 

respectively to the inlet and outlet of the compressor 

stage, allowing the assessment of the stage overall 

performance. Radial measurements are taken with a 

transverse probe in all measurement planes at 

constant throttle, being 27 measurements taken in 

each profile. Azimuthal traversing is only possible 

in Plane 4. VKI 3-hole pneumatic pressure probes 

resolve the span-wise total pressure distribution and 

blade-to-blade flow angle. Static pressure taps are 

present, both at the hub and casing, in all 

measurement planes. 

 

 
Figure 1 - Cut - View of the LEMCOTEC H25 Test 
Section 

The fully propagated total and static pressure 

uncertainties are, in the worst-case scenario (Plane 

0), equal to 3.2% and 3% of the dynamic pressure 

respectively. The total temperature uncertainty was 

computed to be equal 2.5% of the total temperature 

ratio. The total-to-total pressure ratio related 

uncertainty budget was estimated to be lower than 

1% while the mass flow and the isentropic efficiency 

uncertainties are equal to 2.1% and 4% for a near-

stall operating condition. 

 

 
Figure 2 - H25 Stage Meridional View of the 

Numerical Domain 

Coupled with the vast experimental data 

described, a CFD model of the compressor domain 

has been developed and thoroughly validated (Babin 

et al, 2020) Figure 2 shows the numerical domain of 

the stage, defined from Plane 0, the inlet test section, 

to two rotor mid-span chords downstream of Plane 

4, the outlet of the test section. A mixing plane 

approach is applied to link rotor and stator. 

A multi-block structured mesh approach is 

chosen. The O-4H mesh topology is used for both 

rotor and stator rows while the rotor tip gap region 

is meshed with O-H topology. Three mesh levels 

were developed, a coarse, a medium and a finer one, 
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with, respectively, 0.5 million, 3.6 million and 28 

million surface domain cells. 

Fully turbulent RANS computations coupled 

with the k-ω SST turbulence model (Menter, 1994) 

are run. Experimental measurements are used to 

define the domain boundary conditions. At the inlet, 

the measured total quantities distributions are 

employed along with the flow angle. At the outlet, 

for this work in specific, a constant mass flow value, 

measured in a working point of interest was imposed 

to force the flow field to adapt to different inlet total 

conditions variation.  

  

METHODOLOGY 
The objective of the proposed methodology 

comprises in the reduction of the instrumentation 

required to characterize a turbomachine, relying on 

a data assimilation framework to infer the flow field 

across the studied machine and its working 

conditions. Figure 3 shows a schematic of the 

proposed methodology which relies on three main 

building blocks, a forward model, an experimental 

database, and a Bayesian inference algorithm, in this 

case, the ensemble Kalman filter. The methodology 

can be summarized as it follows: 

1. An ensemble is sampled from a prior belief 

(initial guess) about the inlet total pressure 

probability distribution at which the 

machine is operating. 

2. Using computational fluid dynamics as a 

model, compute the quantities of interest of 

the compressor flow field for each 

ensemble member. 

3. Compare the obtained flow fields against 

randomly selected experimental data and 

use the Bayesian inference algorithm to 

update the propagated ensemble flow fields 

and the initial belief of the inlet total 

pressure. 

4. Validate the updated flow field against 

experimental measurements not used in the 

previous data assimilation step. 

The pressure in the test rig of the compressor 

stage is usually equal to the atmospheric pressure 

but it can be changed to control the Reynolds 

number at which the machine operates. Throughout 

the year and even throughout the day, atmospheric 

conditions vary and can affect the experimental 

campaign. With this in mind, the definition of the 

prior belief of the inlet total pressure is taken to be 

an uniform distribution around a mean atmospheric 

pressure, 𝑝0/𝑝𝑎𝑡𝑚 ∼ 𝒰(0.85,1.15). 

The selection of such a weakly informative 

prior distribution avoids biasing the algorithm, while 

ensuring the regularization of it, since the selected 

prior is bounded to the truth (Zhang, Michelén-

Ströfer, & Xiao, 2019), avoiding the problem to 

become ill-posed. 

 

 
Figure 3 - Methodology schematic 

The use of a forward model is required. This 

model can be a dynamic model (Sakov & Oke, 

2008), surrogate models (Marzouk & Najm, 2009) 

or a Computational Fluid Dynamics (CFD) 

computation, the latter being the approach chosen 

for this work, due to its higher level of fidelity, 

allowing a stronger proof of concept for the 

methodology. 

25 CFD runs were performed, in the medium 

mesh, instead of the finest one with the aim of 

reducing computational cost. A baseline case was 

run in the finer mesh and compared against the same 

case, obtained in the medium mesh, being the 

difference between results used to estimate the 

model error distribution. The values for the input 

total inlet pressure were randomly sampled from the 

above presented prior belief uniform distribution. Of 

the 25 randomly sampled inlet total pressures, two 

of them, which correspond to low pressure values, 

failed to converge due to the back pressure imposed 

by the mass flow outlet boundary condition. 

 

 
Figure 4 - Normalized Corrected Compressor Map 

Parallel to this, an experimental database of the 

compressor stage is available. The results obtained 

from the CFD model runs and the experimental 

database allow the computation of the machine 

compressor maps, presented in Figure 4 with 

corrected mass flow against static to total pressure 

ratio. It is clearly noticeable the difference between 

the experimental and the numerical compressor 
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maps. The CFD medium mesh, clearly shows an 

offset relative to the experimental data, 

underestimating the static to total pressure ratio of 

the stage, being this offset higher towards the stall 

region. 

The last building block of the methodology is 

the statistical inference algorithm, the EnFK for 

inverse problems (Iglesias et al., 2013). It 

assimilates experimental measurements (𝑦) with the 

CFD flow field results (𝒢(𝑢)) to update the working 

point (𝑢) and the flow field of the machine. 

 

 
Figure 5 - Algorithm Schematic 

The experimental data has an associated 

probability distribution due to noisy measurements 

(𝑦). The compressor stage flow field (𝒢(𝑢)) will also 

show fluctuations with respect to the inlet conditions 

(𝑢). Therefore, when performing the data 

assimilation update step, we are interested in 

retrieving a well-defined probability density 

function and not just a mean value, which is exactly 

what is achieved by using Bayesian approach. The 

steps of the algorithm are schemed in Figure 5 and 

summarized as it follows based on (Sousa & Gorlé, 

2019): 

From the selected prior distribution initial 

guess, 𝑢, an initial ensemble of size J, 𝑢𝑗=,…,𝐽, 

is sampled from random draws of the prior 

distribution around a mean with a known 

covariance, 𝐶𝑢𝑢. 

The ensemble, 𝑢, is then propagated as the input 

of the forward non-linear model, 𝒢̂(u), that added to 

a given model error, 𝑞, provides a field vector, Φ, 

that represents the complete domain output of the 

model. 

Φ𝑗(𝑥) = 𝒢̂(𝑢𝑗) + 𝑞𝑗(𝑥) 

 

To apply the EnKF update step, observations, 

 𝑦, are required. These are experimental 

measurements which have a known associated 

uncertainty and therefore a known covariance, Cϵϵ, 

and are independent of the iteration process. 

Since these observations are only available in 

ℳ positions along the domain, a measurement 

matrix is applied to the field vector to obtain d̂, 

which contains the field vector, Φ, only at the 

location of the observations. 

 

𝑑𝑗̂ = ℳ[Φ𝑗(𝑥)] 

 

From the initial generated ensemble, which 

represents a first guess, the iterative process uses the 

ensemble, 𝑢, to predict the field vector,  Φ, and sub 

sequentially build 𝑑̂, which is updated with a 

combined weight between the model and observed 

states, represented by the Kalman gain. 

The update of the initial parameter and field 

vector are performed with the usage of covariance 

matrices that relate the initial ensemble with the 

propagated field forecast and can be found in  (Sousa 

& Gorlé, 2019). 

The updated parameter distribution becomes 

then the new ensemble to propagate in the model and 

the process is repeated for a fixed number of 

iterations, on which convergence is assessed. After 

convergence, the updated field vector is processed in 

a validation network where is compared to 

independent experimental observations. 

The algorithm performance will be evaluated in 

this work with usage of the mean absolute error 

(MAE) between the updated result and a reference 

solution for each domain point. 

MAE =
1

𝐽
∑|Φ𝑗 − 𝑦𝑗

𝑡𝑟𝑢𝑡ℎ|

𝐽

𝑗=1

 

 

To close the methodology, and before applying 

it to the H25 compressor stage, the algorithm needs 

to be validated. Adding to it, algorithm parameters, 

such as the number of ensemble members, J, are user 

defined, being a sensitivity analysis required to 

evaluate their impact on the algorithm performance.  

The Lorenz system (Lorenz, 1963) is selected 

as the validation case for the current approach due to 

its non-linear, chaotic behaviour, while being 

deterministic. It is defined by the following system 

of equations: 
d𝑥

d𝑡
= σ(𝑦 − 𝑥)  
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d𝑦

d𝑡
= 𝑥(ρ − 𝑧) − 𝑦 

 
d𝑧

d𝑡
= 𝑥𝑦 − β𝑧 

with 𝜌 = 28, 𝜎 =  10 and 𝛽 =  8/3, ensuring the 

system to present chaotic behaviour. Artificial data 

can be generated with the usage of a 4th order 

Runge-Kutta method. The system has been widely 

studied in the literature and in this work, the 

algorithm will focus on inferring the starting 

boundary conditions, (𝑥0, 𝑦0 , 𝑧0) = (10,20,30), 

based on artificially generated model runs with 

added error and noisy experimental data sampled 

randomly along a fixed time domain. 

A first run of the algorithm on the Lorenz 

system showed promise in the approach, despite 

presenting a higher error than the classic EnKF 

(Evensen, 2003) for the same number of ensemble 

members but still giving a reliable posterior result 

for the system boundary conditions. This result still 

validates the algorithm implementation and a 

parametric study was run where attention was given 

to the ensemble size, J. 

As mentioned in the literature, it was verified 

that an increase in the ensemble size leads to a 

decrease in the obtained error, being this a trade-off 

since a higher number of ensemble members means 

a higher computational cost of the algorithm. An 

algorithm run is performed with an ensemble size, J 

= 1000. The model error, 𝑞, is set to 𝑞 ∼ 𝒩(0,0.1). 

Experimental observations, 𝑦, are artificially created 

in half of the time steps evaluated by the model run. 

These observations have an artificial added white 

noise of the form η ∼ 𝒩(0,1). The prior distribution 

for the starting positions,  (𝑥0, 𝑦0 , 𝑧0), is chosen to 

be a uniform distribution with bounds set to ±3 the 

"truth" position mentioned above. In these 

conditions the obtained posteriors, for one iteration 

of the algorithm with a random seed, are 

summarized in Table 1. 

 
Table 1 - Lorenz system posterior update 

Position Truth Prior Posterior 

𝑥0 10 𝒰(7,13) 𝒩(9.43,0.82) 

𝑦0 20 𝒰(17,23) 𝒩(19.7,0.30) 

𝑧0 30 𝒰(27,33) 𝒩(29.2,1.01) 

 

The algorithm is clearly able to retrieve the truth 

about the starting position from a wide uniform 

distribution. Adding to it, the mean MAE of the 

updated obtained field is around 0.6, which is a very 

acceptable result when dealing with a non-linear, 

chaotic system. The just presented analysis validates 

the algorithm implementation. Despite that, another 

validation case was tested.  

The Rankine vortex (Ide & Ghil, 1998) is a very 

organized, simple theoretical case, which results 

from the interaction between a free and a forced 

vortex and its highly dependent on the vortex 

constants. Summarizing, the algorithm was able to 

retrieve the velocity magnitude along the radius of 

the vortex, as well as, the vortex constant parameter 

with good accuracy, using a reduced ensemble size, 

J = 30. This shows how the complexity of the 

problem being solved changes the required number 

of ensemble members. 

A parallelism can be established. The test case 

of this work, the H25 compressor stage, is expected 

to be between these two validation cases, not being 

as chaotic and ill-posed as the Lorenz system but not 

being organized as the Rankine vortex. 

 

RESULTS AND DISCUSSION 
Throughout this section, the results obtained 

with the proposed methodology are presented and 

discussed, on a 1D mean pressure approach, which 

allows the inference of the machine compressor 

map. 

As previously mentioned, from a prior uniform 

distribution around the atmospheric pressure,  𝑝0/
𝑝𝑎𝑡𝑚 ∼ 𝒰(0.85,1.15),  random draws were 

performed to build the initial ensemble. A first 

ensemble, of size J=23 is used. This initial ensemble 

can be fitted to a normal distribution, p0/patm ∼
𝒩(1.05,0.073). The mean static pressure variation 

along the machine obtained with the forward model 

runs, between rotor and stator, and after stator will 

be used, allowing the prediction of the corrected 

compressor map (static-to-total) and the static 

pressure at plane 2. The used model error is 

estimated locally, using the comparison between a 

fine mesh and the medium mesh results on a baseline 

case. 

The algorithm is only given an experimental 

observation at plane 4 (outlet of stage), ps4/p0, with 

its due uncertainty, allowing the experimental 

measurement available at plane 2, ps2/p0, to be used 

for the methodology validation. The obtained result 

is presented in Figure  with the posterior update 

(light blue) of the inlet total pressure for a design 

point of interest (a) and the obtained corrected static-

to-total compressor map for the H25 compressor 

stage (b). 

From Figure 6 (a), it can be noticed that the 

update from the prior believe, p0/patm ∼
 𝒩(1.05,0.073), about the inlet total pressure does 

not change significantly, being the posterior, p0/
patm ∼ 𝒩(1.06,0.052), shifted from the 

atmospheric pressure. Looking at Figure 6 (b), it 

seems that the estimation of the corrected 

compressor map is between the CFD scatter results 

(in a medium mesh) and the experimental data, 

underestimating the pressure ratios that the 

compressor has shown to achieve experimentally. 

This underestimation of the machine pressure ratio, 

ps4/p0, can be related to the posterior inlet total 

pressure result, which overestimates the inlet total 
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pressure with respect to a reference atmospheric 

pressure, p0/patm. 

With the aim of improving the prediction of the 

compressor map, a second ensemble was generated 

by refining the initial 23 CFD into a more 

informative prior, that is fitted to a normal 

distribution around the atmospheric pressure p0/
patm ∼ 𝒩(0.98,0.036). On one hand, this 

regularizes the inverse problem making it more prior 

bounded since the experimental observations are 

taken with a value of inlet pressure around 

atmospheric conditions. On the other hand, this 

more informative prior is constituted with less 

ensemble members since no extra CFD 

computations are to be performed, which by itself 

leads to worse algorithm performance. 

Similarly to before, the obtained results with 

this second initial ensemble are presented below in 

Figure 7 with the posterior update (light blue) 

distribution for the inlet total pressure (a) and the 

obtained corrected static-to-total compressor map 

for the H25 compressor stage (b). 

Looking firstly at Figure 7 (a), the posterior 

update for the inlet total pressure is presented in light 

blue. The posterior ensemble matches a normal 

distribution p0/patm ∼ 𝒩(1,0.023), meaning a 

distribution around the reference atmospheric value 

and with a standard deviation that is of the order of 

magnitude of atmospheric pressure fluctuations. 

This result is very interesting and shows a classical 

Bayes theorem result, a prior belief is updated and 

gives a posterior that is connected to the prior belief, 

but gets updated by new information, making it a 

more reliable result. 

Going to the analysis of Figure 7 (b), the 

capacity of statistical inference and this 

methodology are in full display. The algorithm is 

capable of building a good corrected compressor 

map, just from a few CFD simulations in a medium 

level mesh and experimental observations at 

Figure 6 - Mean Pressure 1D approach results obtained with EnKF Inversion using 23 CFD simulations to build 
the initial ensemble 

Figure 7 - Mean Pressure 1D approach results obtained with EnKF Inversion using 12 CFD simulations to build the 
initial ensemble 
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multiple working points, that is very close to the 

observed pressure ratios, except for higher mass 

flows where it shows a slight overestimation of 

performance. 

The algorithm employed also gives as a result a 

belief of what is the static pressure ratio at plane 2 

(after the rotor), which is used for validation and 

closes the methodology proposed. The validation 

logic used for this case, verifies if the experimental 

result, not given to the algorithm, is inside the pdf 

obtained by the algorithm update at plane 2, thus 

validating it. Figure 8 presents the prior "design 

space" occupied by the ensemble CFD scatter (red), 

the algorithm update result (black) given only an 

outlet experimental observation (blue) and the 

experimental observation at plane 2 (green). 

 

 
Figure 8 - Methodology validation with experimental 
data at measurement plane 2 

The pressure ratios obtained at the various 

measurement planes with the algorithm employed, 

have a lower, more physical interval value, being 

plane 0 (the initial ensemble) made of smaller 

variations around the atmospheric reference 

pressure, for example. Looking at measurement 

plane 4, it can be noted how the algorithm reacts to 

the experimental observation given, updating the 

ensemble towards it, with a distribution that includes 

it. 

It can be visually inferred that the experimental 

observation of the pressure ratio at plane 2, despite 

not given to the algorithm, is inside the obtained 

result, serving as a validation of the methodology 

and demonstrating the concept of Bayesian 

inference applied to turbomachinery, showing its 

capacity to retrieve the compressor map with limited 

data, but, in this case, also predict the behaviour of 

the machine in the inter-row plane. 

CONCLUSIONS 
In this work, the concept of a new hybrid 

experimental technique methodology, that couples 

numerical modelling with experimental data using 

data assimilation performed by Bayesian inference 

is presented. It aims at reducing the number of 

required probes to characterize a machine, leading 

to less costs and lower probe intrusiveness on the 

flow while maintaining fidelity results. 

A bibliographic research into the topic of 

Bayesian statistics and data assimilation was 

performed and various methods were found suitable 

for this new methodology. The Ensemble Kalman 

Filter for inverse problems (Iglesias et al., 2013) was 

chosen due to its gradient free, low computational 

cost and literature promising results in fluid 

mechanics problems. 

Focus was given on building the compressor 

map, providing experimental data taken at the outlet 

of the stator, and validating the results with data 

taken between rotor and stator. This approach 

revealed that the algorithm is not only able to 

retrieve the compressor map, but also predict the 

inter-row pressure ratio, proving the capability of the 

methodology to reduce experimental measurements 

required to characterize the stage. The influence of 

the prior used was analysed, being a second run of 

the methodology with a more informative prior 

performed, obtaining an improved result. 

Finally, it is important to remark the room for 

improvement of the methodology, from increasing 

the ensemble size, to performing more iterations of 

the methodology, but, more importantly, optimizing 

the experimental measurements selected for the data 

assimilation process along the flow field domain. 
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