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ABSTRACT 
The effect of heating on the stability of the laminar 

three-dimensional boundary layer flow over a rotating 

disk was experimentally investigated. Local convective 

heat transfer coefficients were obtained at different 

running speeds and heating rates by means of an 

electrically heated disk apparatus placed in a large 

water tank. The accuracy of the method was assessed 

by comparison with predictions of the analytical self-

similarity solution for laminar flow, and an excellent 

agreement was found. By means of local heat transfer 

measurements, the critical Reynolds number 

corresponding to the onset of vortices was determined 

as a function of the wall temperature difference and 

Prandtl number. A substantial increase of the critical 

Reynolds number with higher wall temperature 

difference was observed for the three-dimensional flow. 

The observed stabilizing effect due to heating of three-

dimensional water flows was comparable with the 

predictions of perturbation analyses conducted for two-

dimensional flows. 

 

Keywords: stability; three-dimensional boundary 

layer flow; rotating disk; convective heat transfer 

NOMENCLATURE 
a expansion coefficient  - 

A area    m2 

A amplitude (Landau model)  - 

h heat transfer coefficient  W m-2 K-1  

k expansion coefficient  - 

K correlation constant  - 

Nu Nusselt number   - 

Pr Prandtl number   - 

q heat flux    W m-2  

r radial coordinate   m 

Re Reynolds number (Rer =  r2/) - 

T temperature   K 

u radial velocity component  m s-1 

v tangential velocity component m s-1 

w axial velocity component  m s-1 

w


 amplitude of perturbation  -  

z axial coordinate   m 

 
Greek Symbols 

 radial wave number of perturbation - 

 circumferential wave number  

of perturbation    - 

 boundary layer thickness  m 

 perturbation parameter  - 

 viscosity    m2 s-1  

 density    kg m-3  

 rotational speed   rad s-1  

  frequency of perturbation  -  

 

Subscripts 
0 reference 

∞ ambient or bulk 

abs absolute (onset of absolute instability) 

cr critical (onset of instability) 

r radial 

t turbulent (end of transition) 

w wall 

 

1. INTRODUCTION 
It has long been recognized that heating can affect 

the stability of laminar boundary layer flows 

significantly [1, 2]. In the late 1960s, a dramatic 

increase of the critical Reynolds number, i.e. the point 

at which a specific infinitesimal perturbation is 

amplified, and hence the laminar flow becomes 

unstable, was theoretically predicted for two-

dimensional laminar water flows overheated surfaces 

[3, 4]. For instance, Wazzan et al. [4] found by means 

of solving a modified Orr-Sommerfeld equation, 

including additional temperature-dependent viscosity 

terms, that the critical Reynolds number of the Blasius 

flow past a flat plate could increase from its isothermal 
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value 520 up to a level of about 16,000 due to heating. 

Using an approximation method, Hauptmann [3] 

predicted independently a somewhat similar effect. In 

at least some situations, the shift of the critical Reynolds 

number can be related to changes in the curvature of the 

involved boundary layer velocity profiles due to 

variation of viscosity with temperature [1, 2]. Then, it 

follows that gases are stabilized by cooling and liquids 

by heating [2].  

During the last decades, different methods have 

been proposed for calculating the effect of heat transfer 

on the stability of two-dimensional boundary layers [5]. 

Generally, these calculation methods can be classified 

into (i) direct methods and (ii) asymptotic methods. 

Following direct methods, the perturbation equations 

are solved directly after inserting specific property laws 

and considering specific boundary conditions. Typical 

examples are given by Wazzan et al. [4, 6], Lee et al. 

[7], or Al Musleh and Frendi [8]. In asymptotic 

methods, all property variables are expanded in Taylor 

series as a function of a suitable perturbation parameter, 

and then, after inserting, the resulting equations are 

solved for each power of the perturbation parameter. 

This method is also known as property expansion 

method, and typical examples are given by Herwig and 

coworkers [5, 9, 10]. So far, only few experimental 

studies [11−14] are available in the open literature, and 

their data supported at least qualitatively the predicted 

trends. 

However, all of the investigations mentioned above 

dealt with two-dimensional flow configurations. No 

widely accepted work considered so far the effect of 

heating on three-dimensional boundary layers1. The 

flow past a rotating disk, illustrated in Figure 1, 

represents a paradigmatic configuration for studying 

three-dimensional boundary layer flows and their 

stability. In a rotating reference frame, the radial 

velocity component represents a crossflow, and the 

situation becomes rather similar to flows past swept 

wings. In accordance to Reed and Saric [16], “much of 

our knowledge of crossflow has and will continue to 

develop from study of the disk”. The different flow 

regimes over a rotating disk are illustrated in Figure 2. 

For sufficient small local Reynolds numbers 

Rer =  r2/v with viscosity v and rotational speed , the 

flow remains laminar. Spiral vortices occur due to the 

crossflow instability at a radial distance rcr, 

corresponding to Recr. The end of transition to 

turbulence is achieved at rt. A fully turbulent flow is 

                                                           
1 The theoretical stability analysis [15] is not widely accepted 

because the outcome of this study (which considered an artificial fluid 

with a temperature- dependency of viscosity of water but with a 

Prandtl number of dry air) was rather questionable: the thermal 
boundary layer of the base flow was much thicker than the velocity 

 
Figure 1: Mean tangential and radial velocity 

profiles in the rotating boundary layer as seen in the 

rotating reference frame 

 

observed at a Reynolds number of about Ret = 3.2 × 105 

[17, 18].  

Interestingly, the rotating disk boundary layer 

supports an absolute instability at Reabs = 2.6 × 105  

[19], a value that is rather close to Ret. The implication 

of absolute instability is that laminar flow cannot exist 

beyond Reabs regardless of the preparation of the 

experiment. It also offers a natural explanation for the 

low data scattering (of order 3 % up to 5 %) reported in 

the literature regarding the observed turbulent Reynolds 

number Ret. There exists a noticeable range regarding 

the critical Reynolds number Recr in research. Precise 

hot wire measurements for an isothermal disk indicated 

a value of about Recr = 8.6 × 104, which is in good 

agreement with perturbation calculations [16−19]. Still, 

several authors reported much higher values for the 

critical Reynolds number, as listed in [20]. The reason 

for that is caused by substantial experimental 

challenges to determine the onset of infinitesimal 

perturbations.  

Although many theoretical and experimental 

stability investigations are available for the rotating 

disk (see, for instance, the references cited in [16−20]), 

the effect of heating on stability was excluded so far. 

In addition to the somewhat questionable analysis [15], 

the only exception is a conference contribution [21] in 

which an unexpected observation (namely the rather 

low number of spiral vortices found by means of IR 

thermography on a heated disk rotating in the air) was 

qualitatively explained on the basis that, due to heating, 

“the stability characteristics may, therefore, change 

significantly”. 

boundary layer for a fluid with a Prandtl number close to unity, the 
critical Reynolds number was of order 228 even for a fluid with a very 

small temperature-dependent viscosity, the impact of heating and 

velocity profiles were fully in contrast to any experience reported in 
literature. 
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Figure 2: Flow regimes over a rotating disk 

 

The exclusion of the effect of heat transfer on 

stability on rotating disk flows is somewhat surprising 

because many technical applications are largely 

concerned with heated or cooled disk systems [20]. On 

the other hand side, the effect of heat transfer on 

stability is comparable small in the case of air as already 

known from two-dimensional stability analyses [3−5], 

and it can easily be overseen in typical heat transfer 

experiments. Hence, a special experimental 

investigation was planned and performed in order to 

provide some information regarding this important 

topic.  

 

 

2. THEORETICAL CONSIDERATIONS 
From an experimentally point of view, the 

investigation of the effect of heat transfer on the onset 

of infinitesimal perturbations is rather challenging or 

nearly impossible in the case of a disk rotating in still 

air. Since two-dimensional calculations [3−5] 

demonstrated that the effect should be much higher in 

water, a disk rotating in a water tank was chosen as 

approach. In the following, some general theoretical 

considerations are presented which demonstrate that 

such an approach offered indeed a good chance for 

determining the effect of heating on the onset of the 

instability of the three-dimensional flow over a rotating 

disk. 

 

2.1 Property Expansion Method 
The strength of the property expansion method is 

that the general expression for the critical Reynolds 

number 

))()(1(ReRe 2
0   Oakakcr +++=               (1) 

remains valid for every Newtonian fluid and any base 

flow with the small perturbation parameter 
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and the coefficients a and aµ depending on both Prandtl 

number Pr and base flow [10]. Hence, equation (1) 

describes the shift of the critical Reynolds number Recr 

for sufficient small normalized wall temperature 

differences  not only for two-dimensional but also for 

three-dimensional boundary layers. The characteristics 

of specific base flows are covered by the specific values 

of the coefficients a and aµ.  

 

Table 1: Thermophysical coefficients for air and 

water at 1 bar and 293 K 

 

Fluid Pr  k  k  

Air 0.717  −1.000  0.775 

Water 7.010  0.057  −7.132 

 

These coefficients have to be computed after solving a 

complex set of flow-specific perturbation equations. 

For the Blasius flow past a flat plate, information about 

the (negative) values of these coefficients can be found 

in [10]. Their order of magnitude is about unity, and 

they also exhibit a moderate Prandtl number 

dependency. A similar situation might be assumed for 

the three-dimensional flow over a rotating disk, too. 

Then, the effect of heating or cooling on stability is 

mainly governed by the value of the thermo-physical 

coefficients k and kµ. Some typical values for air and 

water at 1 bar and 293 K are listed in Table 1. Inspection 

of Table 1 indicates that the shift of the critical 

Reynolds number is small in the case of air but 

significant in the case of water. Hence the property 

expansion method proposed by Herwig and coworkers 

[5, 9, 10] offers a simple answer to the question why the 

effect of heat transfer on stability was mainly overseen 

in the scientific literature about disks rotating in the air 

so far. The different signs of the coefficients are leading 

to the conclusion that heating stabilizes the flow in the 

case of water. For water, the stabilizing effect depends 

mainly on the change of viscosity with temperature. 

  

2.2 Spiral Vortices and Heat Transfer 
For a rotating disk in a fluid otherwise at rest, a 

natural length scale is given by ()1/2 [1, 2, 20], and 

all axial dimensions, z, can be normalized by this length 

scale in order to get a suitable self-similar coordinate. 

The velocity and temperature profiles can be computed 
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by means of an exact self-similarity solution (also 

known as von Kármán solution) in the laminar flow 

regime [20]. The velocity boundary layer thickness is 

of order  ≈ 5 ()1/2. In the case of air with Pr = 0.7, 

the thermal boundary layer thickness is of comparable 

size, whereas in the case of water with Pr = 7 a much 

thinner thermal boundary layer results. 

The size of the spiral vortices is governed purely 

by hydrodynamics. The inviscid analysis by Stuart et al. 

[22] yielded as dominant term a relation 

exp(−3z()1/2/2) for the vanishing of the 

perturbation velocity field as a function of the axial 

coordinate z. As a result, the spiral vortices are 

essentially confined to a region close to the disk wall (z 

= 0) up to a value of about z ≈ 2 ()1/2. The viscous 

flow calculations by Kobayashi et al. [23] yielded a 

similar result. This implies that the main transport effect 

due to spiral vortices occurs well within the velocity 

boundary layer. Figure 3 shows schematically the 

normalized velocity and temperature profiles on a 

heated rotating disk for two different Prandtl numbers 

corresponding to air and water, respectively.  

The domain of the spiral vortices is comparable to 

the laminar radial velocity boundary layer of the base 

flow caused by the rotating disk. The thermal boundary 

layer thickness due to the laminar base flow is much 

thicker than the spiral vortices region in the case of air 

(Pr = 0.7). In the case of water (Pr = 7.0) the thermal 

boundary layer is much thinner.  

The convective heat transfer caused by the laminar 

base flow can be correlated by means of 

2/1
0 Re(Pr)Nu rK= .   (4) 

The correlation constant K is in fact a function of the 

Prandtl number Pr and can be obtained by means of the   
known self-similarity solution of the unperturbed 

laminar flow [20, 24]. Due to the spiral vortices, an 

additional heat transfer contribution, h, results for the 

unstable flow regime over a rotating disk. Its existence 

was visualized by IR thermography in [21]. In the case  

 
Figure 3: Velocity and temperature profiles on a 

rotating disk for two different Prandtl Numbers  

of water, this additional contribution might be 

substantial because the spiral vortices do effectively 

transport hot fluid from to wall to the cold region 

outside of the thin thermal boundary layer (see Figure 

3). In the case of air, this mechanism is much weaker 

because the transport of fluid occurs mainly in the hot 

region.  

 

2.3 Landau Model and Critical Reynolds 
Number 

The mathematical investigation of stability is 

exceptionally complicated, but valuable insight can be 

gained often by means of a simple phenomenological 

model proposed by Landau [25]. This model assumes 

that below the critical value of a suitable control 

variable (e.g., (Re – Recr)/Recr) all perturbations modes 

of a suitable order parameter A are vanishing. At the 

onset of instability, at least one mode is growing. As 

discussed in detail in [25], one gets finally the simple 

relation  
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corresponding to a Hopf-bifurcation with an empirical 

constant k. Identifying the order parameter A with the 

velocity of the perturbation (i.e., the velocity magnitude 

of the spiral vortices) and assuming a laminar heat 

transfer mechanism (i.e., 2/1Ah ), the following 

heat transfer correlation results: 
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The above equation enables a determination of the 

stability limit, Recr, by means of a data fitting procedure 

for Reynolds numbers Re much larger than Recr for 

which measurable deviations h = h(Re) – h0 from the 

undisturbed laminar heat transfer coefficient h0 can be 

observed. 

 

 

3. EXPERIMENTAL METHOD AND 
PROCEDURE 
The experimental apparatus was essentially the 

same as employed in a prior investigation [24]. In the 

following, the experimental method and procedure are 

briefly described. For further details about the 

apparatus and data reduction items, the reader is invited 

to consult reference [24]. 
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3.1 Rotating Disk Apparatus 
The electrically-heated disk was placed in a 

transparent pool of water with a cylindrical shape, as 

shown in Figure 4. The disk was driven by an electric 

motor with variable running speed. In order to minimize 

natural convection contributions, the heated surface 

was down-side oriented in the pool. The disk device and 

its design, including dimensions, are shown in more 

detail in Figure 5, and relevant data are listed in Table 

2. The disk device consisted of a main disk including a 

heating wire and temperature sensors and thermal 

insulation to minimize parasitic heat losses. 

 

 
 

Figure 4: Experimental test rig 
 

 

 
Figure 5: Disk design and dimensions (mm) 

 

 

 
Table 2: Technical data of the test rig 
 

Disk diameter (heated area) 125 mm 

Disk thickness (total)  32.5 mm 

Heating power range  0 – 720 W 

Running speed range  0 – 1450 rpm 

Pool radius   575 mm 

Pool height   1010 mm 

 

Resistance temperature detectors (RTD-PT1000 

high accuracy class 1/10 DIN) were used to measure the 

temperature at five different radial locations. The RTDs 

were embedded 0.5 mm beneath the aluminium surface 

disk. All electrical signals from the disk temperature 

sensors and heat inputs were supplied by slip rings and 

recorded during the measurements. The outer disk 

surface was carefully polished to ensure that the disk 

surface was smooth in terms of hydrodynamics [1]. The 

optimization of the heating wire rooting and its 

dimensions required several numerical heat conduction 

calculations. For the present purpose, an isothermal 

surface was required. In the case of laminar flow regime 

over a rotating disk with constant boundary layer 

thickness , a uniform wall temperature Tw = constant 

also corresponds to a constant heat flux condition 

q = constant [20]. Finally, a practically uniform 

temperature distribution was achieved with a maximum 

deviation of only Tw/Tw,0 < 0.004.  

Since it was known that free-stream particles could 

affect the transition [13, 26], clean and degassed water 

was used in the tank. But even then, it was observed in 

a preliminary test that small bubbles arising from 

dissolved air accumulated at the heated disk during 

long-time measurements. The water in the tank was 

heated for a few days to avoid this serious disturbance. 

This procedure worked well, and during the following 

measurements, no problems caused by bubbles or 

particles were observed.  

 

3.2 Data Reduction and Uncertainty Analysis 
The general heat balance equation for the disk 

apparatus and the data reduction for obtaining heat 

transfer coefficients h are discussed in detail in [24]. It 

was found that radiation heat transfer and the parasitic 

heat conduction losses through the shaft were 

essentially negligible (less than 1 %) for a rotating disk 

in water. The natural convection heat transfer effect was 

small due to the down-side orientation of the disk in the 

pool. Still, it contributed in the case of low rotational 

Reynolds numbers some per cent to the total heat 

transfer coefficients. Since it was a rather systematic 

effect, the desired forced convection heat transfer 

coefficient h was correspondingly corrected [24].  

The down-side orientation of the heated disk 

resulted in the liquid being heated from above which 

represented an inherently stabilizing effect. However, 

as shown in [1], laminar boundary layer stability is not 

affected by the buoyancy effect until the Richardson 

number is about 0.005. In the present experiment, the 

actual value of the Richardson number was even 

smaller, and hence this stabilizing effect was neglected. 

The heat transfer augmentation due to the spiral 

vortices, h/h0, was related to the measured local 

temperature, T, and bulk temperature, T∞ , and 
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undisturbed wall temperature, Tw, using the following 

local heat transfer equation: 

))(()( 00  −+=− TThhTTh w   (7) 

because q =  constant holds for the isothermal disk in 

laminar flow. Then, the order parameter of the Landau 

model called 

−

−
=



TT

TT

h

h w

0

.    (8) 

During the measurements, local temperatures T 

were measured at different radial locations r for several 

running speeds of the disk and various ambient 

temperature levels T∞ and heating rates q. The 

undisturbed wall temperature Tw was identical to the 

wall temperature for purely laminar flow. Its value was 

determined through local temperature values for 

sufficiently low Reynolds numbers Rer, i.e. within the 

inner laminar flow region (see Figure 2) where the wall 

temperature remained constant. 

Special attention was spent on accounting for 

temperature-dependent material properties. In the case 

of water, the thermophysical properties like Prandtl 

number or viscosity depend on temperature 

significantly. The evaluation of thermophysical 

property values at a simple reference temperature (e.g., 

film temperature, bulk or wall temperature) might 

introduce a significant error in some heat transfer 

calculations. Hence the so-called property-ratio method 

[24] was used assuming the set of exponents for laminar 

flow.  

The tolerances of the disk dimensions were 

negligible. The uncertainty level of the temperature 

measurements was not larger than 0.5 K and typically 

smaller after careful calibration. The uncertainty level 

of the electric heating power supply was rather low (of 

order 0.1 %). The running speed of the rotor was 

frequency-controlled up to an uncertainty of 1.5 rpm. 

The total uncertainty level of the local rotational 

Reynolds number Rer =  r2/v was 0.1 up to 3.0 %. The 

uncertainty regarding the actual Prandtl number Pr was 

about 1 %. The total uncertainty level regarding the 

local Nusselt number Nu was 2 up to 5 %.  

 

3.3 Validation 
An excellent validation case for assessing the accuracy 

of the experimental apparatus and procedure is given by 

a comparison of the laminar heat transfer results (see 

equation (4)) with the prediction of the exact self-

similarity solution [20, 24]. In Figure 6, the 

experimentally obtained local Nusselt number Nu is 

plotted against the local Reynolds number Rer. The 

agreement between the experimental data and the 

prediction of the self-similarity solution was excellent 

over the entire laminar flow regime. The analytical 

 
Figure 6: Laminar convective heat transfer from a 

rotating disk in still water  

 

 
Figure 7: Laminar convective heat transfer 

correlation constant K against Prandtl Number Pr 
 

treatment enabled a calculation of K as a function of 

Prandtl number by means of the self-similarity solution 

for velocity and temperature. 

For instance, the analytical expression 

Nu = 0.95 Rer
1/2 resulted in the case of Pr = 6.5. The 

same excellent agreement between experimental data 

and the self-similarity solution prediction was observed 

in the case of other Prandtl numbers ranging from 

Pr = 4 up to Pr = 12. The different values of Prandtl 

number were achieved by different bulk temperatures 

(ranging from close to 4°C up to more than 44°C).  

The result for the experimentally determined 

laminar heat transfer correlation constant K (equation 

(4)) is shown in Figure 7 for some Prandtl number 

values. The value for Pr = 0.7 corresponds to 

measurements performed with a rotating disk in air. The 

other values were obtained for a rotating disk in the 

water at different ambient temperatures.  

The agreement between the experimentally 

obtained values, and the prediction of the self-similarity 
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solution was excellent. Based on this observation, it can 

be stated that the actual experimental apparatus was 

capable of enabling an investigation of laminar flow 

over a heated rotating disk. It was further assumed that 

the high accuracy of the test apparatus also supported a 

study of the onset of instability.  

 

 

4. RESULTS AND DISCUSSION 
In this section, the results of local heat transfer 

measurements are presented and discussed, especially 

in regard to the effect of heating on the stability of the 

boundary layer flow over a rotating disk.  

 

4.1 Temperature Deviations and Heat Transfer 
For several heating rates, running speeds and bulk 

temperature levels, the normalized temperature 

deviation in respect to the laminar flow regime were 

experimentally obtained. Examples for such a 

measurement are shown in Figure 8. Despite the 

noticeable uncertainty level, the laminar flow regime 

with an essentially constant wall temperature and a 

dramatic increase of the temperature deviation at a 

certain local Reynolds number can be noticed in Figure 

8. The jump of the wall temperature occurred at 

different Reynolds numbers of approximately 1.5 × 105 

and 3.0 × 105 depending on the wall temperature 

difference T = Tw – T∞, respectively. This observation 

might be interpreted as an indication that heating can 

stabilize laminar water flow, but since such temperature 

jumps are also already known as characteristics for the 

transition region in the case of heated disks rotating in 

the air [20, 27], a further analysis was necessary. 

Since the Landau model is connecting the occurrence of 

a perturbation mode directly with the Reynolds number 

and a transition point, the heat transfer data were 

evaluated in respect to the Landau model (equation (6)).  

As an example, the results obtained for a wall 

temperature difference value of T = 2.9 K are shown in 

Figure 9. The Landau model seemed to be well  

 
Figure 8: Normalized temperature profiles for two 

different wall temperature differences  

applicable to the present experimental data, as 

demonstrated in Figure 9. By means of minimizing the 

error between the experimental data and the Landau 

model, the values for the two model parameters k and 

Recr were determined. The value Recr = 1.5 × 105 was 

obtained for T = 2.9 K as illustrated by means of 

Figure 9. The physical meaning of the Landau model 

parameter Recr of Figure 9 became clearer when the 

local Nusselt number expression Nur/K was plotted 

against Reynolds number Rer as shown in Figure 10. 

Since different Prandtl numbers Pr (between Pr = 4 and 

Pr = 6.5) were involved during the measurements, the 

local Nusselt number Nur was divided by the laminar 

heat transfer correlation parameter K(Pr). Then, the 

expression Nur/K becomes strictly identical with Rer
1/2 

(see equation (4)) for any Prandtl number in the laminar 

regime. This behaviour was indeed observed up to a 

certain critical Reynolds number in the experiments 

with water (see the corresponding line denoted by 

m = 1/2 in Figure 10). For sufficient large Reynolds 

numbers, Re > Recr, deviations from the laminar line 

were observed. The same critical Reynolds number 

values were found in the plots shown in Figure 10 as 

obtained by the Landau model (see Figure 9). 

The critical Reynolds number Recr depended 

significantly on the wall temperature difference T. For 

sufficient large Reynolds numbers of about Re > 3.0 up 

to 4.0 × 105, the local Nusselt numbers could be 

correlated by means of a turbulent heat transfer 

correlation (see the corresponding line denoted by 

m = 0.8 in Figure 10)  

 
8.0ReNu rr  . 

              (9) 

In literature, agreement with this correlation is assumed 

to represent the fully turbulent flow regime [20]. In 

addition to the new data obtained for a disk rotating in 

water, the accurate heat transfer data reported by Elkins 

[27] are schematically plotted in Figure 10. 

 

 
Figure 9: Application of the Landau model to heat 

transfer from a rotating disk 
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Figure 10: Local nusselt number expression Nur/K 

against Reynolds Number Rer as function of wall 

temperature difference 

In the case of air, the significant increase of the local 

Nusselt number between Rer = 2.6 × 105 and 3.6 × 105 

is typically identified with the transition region [20]. 

This is reasonable, because weak spiral vortices 

certainly do not contribute substantially to the total heat 

transfer in the case of air as discussed in section 2.2, and 

the observed heat transfer augmentation could be better 

explained by a further developed transitional flow. But 

in the case of water, even weak spiral vortices seemed 

to create a measurable heat transfer effect.  

 

4.2 Critical Reynolds Number 

Based on heat transfer data discussed in section 4.1, the 

critical Reynolds number Recr was obtained as function 

of wall temperature difference T = Tw – T∞, Figure 11. 

In Figure 11, Recr was defined as the local Reynolds 

number value for which a first systematic deviation 

from the laminar heat transfer correlation was observed. 

In addition to the experimental data, a best-fit line is 

plotted in Figure 11. Remarkably, this line predicted an 

isothermal critical Reynolds number Recr,0 = 8.8 × 104, 

which is in excellent agreement with literature data 

[16−20]. This coincidence might be considered as a 

further strong indication that the actual critical 

Reynolds number is indeed a good description variable 

of the onset of instability of the water flow over a 

rotating disk.  

The observed stabilization of the three-

dimensional flow over a rotating disk due to heating 

was compared with results calculated for the two-

dimensional Blasius flow past a flat plate. For the latter 

case, reliable literature data are available [4, 5, 9, 10]. 

The property-expansion method developed by Herwig 

and coworkers (equation (1)) was able to capture the 

linear trend over the considered temperature range. 

However, since the base flow over a rotating disk is 

quite different than the Blasius flow, the good 

agreement between the new data and the predictions by 

the direct method (equation proposed by Wazzan et al. 

in [4] and evaluated as in [9]) for small temperature 

differences should not be over-interpreted.  

A significant effect of Prandtl number Pr on the 

critical Reynolds number was not observed in the 

present study. For instance, the same critical Reynolds 

number Recr = 1.5 × 105 was obtained for water with 

Pr = 4 and Pr = 7 for the same wall temperature 

difference T = 2.9 K. Furthermore, the data points 

plotted in Figure 11 behaved similarly although 

different Prandtl numbers were involved. Such a weak 

or moderate Prandtl number dependency is in 

agreement with predictions of the two-dimensional 

theory proposed by Herwig and coworkers [10]. 

 

 

4.3 Heating and Absolute Instability 
So far, a rigorous linear perturbation analysis for 

the rotating disk in a fluid with temperature-dependent 

viscosity is essentially missing. Still, an interesting item 

might be suggested using Lingwood’s isothermal 

analysis [19] regarding absolute instability.  

It is known that inviscid crossflow instability 

destabilizes boundary layer layers, and her calculations 

[19] showed that in the case of a rotating disk boundary 

layer the absolute instability occurring at Reabs is caused 

by an inviscid mechanism (although the exact value of 

the corresponding Reynolds number Reabs is affected by 

viscous flow effects). 

 

 
Figure 11: Critical Reynolds Number Recr as 

function of wall temperature difference T for the 

three-dimensional flow over a rotating disk in water  
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If Coriolis and streamline curvature effects are 

neglected, the Rayleigh equation for the rotating disk 

calls 
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In the inviscid Rayleigh equation (10), viscosity is 

considered to act only in the establishment of the base 

flow u and v and for defining the boundary layer 

thickness and the Reynolds number Re of the flow. 

Since all of these base flow quantities depend rather 

weakly on temperature-dependent viscosity terms, it 

follows that the stability limit predicted by the Rayleigh 

equation (10) would be the same as for an isothermal 

configuration. Thus it might be stated that the Reynolds 

number for the absolute instability, Reabs, is not strongly 

affected by temperature-dependent viscosity terms. 

Since the end of the transition, Ret, is observed to 

be in the vicinity of this absolute instability, it might be 

concluded that the fully turbulent flow state on a heated 

disk is reached close to the values obtained for an 

isothermal disk. This conclusion is supported by the 

present experimental data, see Figure 10. Then, it 

follows that heating (and cooling) affects practically 

only the onset of transition but not the end of the 

transition in the case of such a crossflow instability. 

This is a remarkable difference to two-dimensional 

configurations like the Blasius flow past a flat plate. 

Here, Linke [28] observed in 1942 a systematic effect 

of heating on the turbulent drag of a flat plate and 

concluded that heating affects the stability of the 

boundary layer (that was later confirmed by detailed 

analysis [1, 2]). 

 

 

5. CONCLUSION 
In this contribution, the results of an experimental 

study employing an electrically heated rotating disk 

placed in a large water tank were reported. Local wall 

temperatures and heat transfer coefficients were 

determined. The accuracy of the test apparatus was 

assessed by comparing actual heat transfer data with 

predictions of the exact self-similarity solution for 

laminar flow. The critical Reynolds number was found 

by wall temperature measurements without the need to 

employ invasive measurement techniques like hot-wire 

anemometry in the flow field. Although some data 

scattering was unavoidable, a substantial increase of the 

critical Reynolds number due to heating was found. As 

known to the authors, this represented the first 

experimental study dealing with the effect of heating on 

the stability of the three-dimensional flow. The 

observed increase of the critical Reynolds number was 

in reasonable agreement with literature results reported 

for two-dimensional heated water boundary layers. The 

present approach yielded asymptotically an isothermal 

critical Reynolds number value that was very close to 

the literature result obtained for a disk without heating.  
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