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ABSTRACT 
The characterization of the convective heat 

transfer process should preferably be based on 

invariants descriptors independent from the thermal 

boundary conditions. The convective heat transfer 

has been traditionally expressed using the 

convective heat transfer coefficient included in the 

Newton’s law of cooling. Regrettably, this 

coefficient depends on the actual flow temperature 

due to the temperature dependence of the viscosity. 

Hence, unsteady thermal boundary conditions 

would result in a varying convective heat transfer 

coefficient. To resolve this challenge, the adiabatic 

heat transfer coefficient [1] and the Green Function 

approach [2] were proposed to identify a convective 

heat transfer invariant from the thermal boundary 

conditions. 

In this paper we propose the use of the Discrete 

Green Function (DGF) coefficients to characterize a 

backward-facing step. The complex flow topology 

exhibits regions of separation, recirculation and 

reattachment. The analysis is completed with the 

evaluation of the effect of different inlet boundary 

conditions in the DGF coefficients. 

NOMENCLATURE 
Symbol Meaning [units] 

A Area [m2] 

DGF Discrete Green’s Function 

G Discrete Green’s function coefficient 

𝐺−1 Inverse Discrete Green’s function 

coefficient 

g Green’s function coefficient 

h Convective heat transfer coefficient 

[W/m2-K] 

k Thermal Conductivity [W/m-K] 

Nu Nusselt number [-] 

Pr Prandtl number [-] 

Re Reynolds number [-] 

St Stanton number [-] 

𝑞̇𝑐𝑜𝑛𝑣  Convective heat transfer flux [W] 

T Temperature [K] 

 

INTRODUCTION 
In turbine applications, the extreme thermal and 

mechanical conditions limit the operation of sensors 

as well as the optical access. Therefore the 

convective heat transfer coefficient is usually 

defined using far field temperature data. However, 

the thermal boundary conditions within the model 

typically change in time and space, hence the 

conventional Newton law approach based on the 

upstream total temperature and local surface 

temperature is not adequate to define an invariant 

descriptor. 

The Green Function approach delivers an array of 

different coefficients associated to the aerodynamic 

conditions, dictated by the geometry. Such array is 

independent of the thermal inlet conditions. The 

controlled surface is discretized into cells and each 

cell is associated to a vector of coefficients. The 

Discrete Green Function coefficients are calculated 

using the temperature response of the cell to a heat 

flux pulse imposed at different locations. 

The Green Function approach has been applied by 

Moffat [2] using the superposition technique to 

analyze conductive heat flux along electronic 

cooling systems. Vick et al. [3] calculated the 

convective heat transfer problem for flow in tubes 

with non-uniform boundary conditions. Batchelder 

and Eaton [4] assessed the heat transfer through a 

turbulent boundary layer imposing uniform heat 

flux. Booten and Eaton [5] applied this methodology 

to assess heat exchange in the internal cooling 

passages of a turbine blade [6]. 

In this paper we study a backward-facing step. 

Aerodynamically, the backward-facing step offers 

different regions where the behavior of the 

convective heat flux cannot be interpolated and 

therefore we have performed a full analysis of the 

wall heat exchange. 

METHODOLOGY 
The definition of the convective heat transfer has 

been historically expressed by Newton’s law of 

cooling which is expressed as: 
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ℎ =
𝑞̇𝑐𝑜𝑛𝑣 𝐴⁄

𝑇𝑓𝑙𝑜𝑤 − 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒

 (1) 

The convective heat transfer coefficient is the ratio 

between the convective heat flux and the flow to 

surface temperature difference. In transient or 

unsteady conditions the coefficient is not constant 

since the flow to surface temperature difference 

keeps constant while a change in the heat flux is 

measured due to the fluctuating boundary layer. In 

order to extend the definition to complex flows with 

non-uniform and varying boundary conditions, we 

should broaden the evaluation of a new convective 

heat transfer coefficient that keeps the linearity in 

the concept. Therefore, if a change in temperature 

occurs (𝑇𝑓𝑙𝑜𝑤 − 𝑇𝑠𝑢𝑟𝑓𝑎𝑐𝑒) this should represent a 

proportional change in the heat transfer rate. The 

linearity of the energy equation can be applied with 

a superposition technique to measure the data 

extracted from the flow simulation developed in 

Fluent and determine the Green’s function 

distribution for this specific case of study. 

In linear differential equations the principle of 

superposition is often applied. In this paper the 

Green’s function method is applied to determine the 

relationship between convective heat flux and the 

surface temperature field. In a first approximation 

the energy equation is linearized for the convective 

heat transfer, which limits the applicability to small 

temperature differences [2]. The Discrete Green’s 

Function (DGF) was applied to predict the heat 

transfer over a backward-facing step with a constant 

heat flux applied to the bottom plate.  

The region is discretized into n strips, each with a 

different length l. l is smaller close to the corner 

where the recirculation is expected. l increases along 

the axial distance (x). The rise in temperature is 

thereafter discretized in different pulses representing 

the average increase of temperature for each strip as 

shown in Figure 1. The resulting heat flux 

distribution is integrated over each strip to obtain the 

discretized heat rate distribution. 

 
Figure 1. Surface discretization approach. 

In order to accurately calculate the coefficients 

that define the heat flux and the associated increment 

of temperature at the wall, an isothermal calculation 

has been performed. The discretization of the bottom 

plate is based in this calculation. This isothermal 

calculation was performed with ambient 

temperature on the walls and a flow temperature 

100K higher. 

 

Figure 2. a) Numerical domain. b) Nusselt number for 

isothermal wall conditions. 

The Discrete Green’s Function, G, is the matrix 

that defines a relationship between the distribution 

of the discrete temperature rise and the 

corresponding distribution of discretized heat rate. It 

can be written as an array of elements such as: 

 

𝑞̇𝑖𝑗 = 𝑔𝑖𝑗∆𝑇𝑗 , (2) 

 

where 𝑔𝑖𝑗 is the element of G relating the average 

temperature rise on strip j and the resulting heat rate 

on strip i. The superposition technique considers 

individually the effects of each of the n square pulses 

in temperature rise. The net effect on element i is the 

summation of all n elements, such as: 

 

𝑞̇𝑖 =  ∑ 𝑔𝑖𝑗∆𝑇𝑗

𝑛

𝑗=1

 (3) 

 

Or in matrix form: 

 

𝑞̇ = 𝐺∆𝑇 (4) 

 

where ∆𝑇 is the vector containing the discrete 

temperature rise at each step and 𝑞̇ is the vector 

containing the heat rates. Each pulse in temperature 

rise along the domain affects the resulting heat rate 

at any location. The inverse Discrete Green’s 

Function, G-1, relates the heat rate distribution to a 
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temperature rise distribution, a matrix of dimension 

equal to G. Each element of the matrix fulfills [4]: 

 

∆𝑇𝑖𝑗 = 𝑔𝑖𝑗
−1𝑞̇𝑗 (5) 

 

Using the method of superposition the total 

temperature rise response can be written in terms of 

a matrix multiplication 

 

∆𝑇 = 𝐺−1𝑞̇ (6) 

 

In order to obtain the temperature distribution, 2D 

RANS calculations were performed using ANSYS 

Fluent and imposing pulses of heat flux at each 

discretized strip. The simulations have been 

performed using Realizable k-epsilon turbulence 

model without wall functions. The analyzed 

geometry is observed in the Figure 2a) and the 

bottom plate is located between the axial position 

0.2m and 1m. The baseline calculation was 

performed at ambient pressure, with a flow inlet 

temperature of 400K and an initial wall temperature 

of 300K. The inlet Mach number was selected as 

0.12. 

The heat flux 𝑞𝑖1 is applied imposing 10000 W/m2 

in each strip. The 2D RANS simulation allow to 

retrieve the temperature distribution ∆𝑇𝑗𝑖  at every 

cell. The Green’s Function 𝐺𝑖𝑗 defines the following 

relationship [4] 

 

𝑞𝑖1 = 𝐺𝑖𝑗∆𝑇𝑗1 (7) 

 

Where there are 𝑁2 unknown elements in 𝐺𝑖𝑗 and 𝑁 

equations. Considering the heat transfer for a value 

of 𝑀 − 1 temperature distributions it gives  

 

𝑞𝑖𝑚 = 𝐺𝑖𝑗∆𝑇𝑗𝑚 (8) 

In all these calculations the ∆𝑇 must be referenced 

to a reference temperature. In turbines, the reference 

temperature is usually the turbine upstream 

temperature in the plane upstream of the studied 

vane or blade. In this work, the reference 

temperature used is the adiabatic wall temperature 

[6]. The adiabatic wall temperature differs 

significantly from the inlet total temperature, 

especially at higher Re numbers and when the local 

Mach number is higher than 0.2 [7]. Therefore this 

temperature has been extracted from another 

simulation without heat flux in the bottom plate. The 

temperature drop may be explained by the use of a 

recovery factor applied to the total temperature at the 

inlet. 

𝑇0

𝑇𝑎𝑑𝑖𝑎𝑏𝑎𝑡𝑖𝑐 𝑤𝑎𝑙𝑙

= 1 + 𝑟𝑐

𝛾 − 1

2
𝑀𝑎2 

(9) 

The recovery factor is based on empirical 

correlations for specific geometries [8]:  

𝑟𝑐 ≈  𝑃𝑟1/3 (10) 

The use of this recovery factor is fundamental for 

cases with flow Mach number over 0.2, since the 

error in the determination of the coefficients become 

significant. In the analyzed case, the adiabatic wall 

temperature at high Mach numbers was determined 

by a simulation imposing adiabatic walls, since the 

recovery factor varies with the axial location in 

complex geometries with recirculation and 

reattachment. 

The final discretization includes 42 strips, with 20 

of them between the axial positions 0.2 and 0.4; 10 

of them between 0.4 and 0.6; other 10 between 0.6 

and 0.9 and the last two between 0.9 and 1m. In all 

these sectors, the strips are equal in length. 

42 calculations were performed to determine the 

DGF coefficients. In these calculations, we imposed 

a pulse per length unit, since the length of the strips 

is variable depending on the sector, and we evaluate 

the associated change in temperature at every strip. 

The coefficients are calculated using the equation 

(7) and the inputs of heat flux and increment of 

temperature obtained in the simulation. With these 

coefficients three different studies have been carried 

out at different inlet conditions. 

NUMERICAL ASSESSMENT OF THE DGF 
The validation of the Green Function approach has 

been performed using a prescribed heat flux 

distribution which is detailed in the Figure 3b). The 

validation consisted in a comparison of the 

temperatures calculated with the inverse method and 

the temperature at the wall obtained using 2D RANS 

calculations with ANSYS Fluent. 

In Figure 3c) the agreement between the result 

obtained with the DGF approach and CFD results is 

represented. There is a noticeable disagreement in 

the section next to the vertical wall. There are 

different reasons for this difference. The existence of 

a secondary vortex in this part may affect the 

calculations if the aerodynamic phenomena is not 

exactly the same in all the analyzed cases, even 

though the steady state simulation is totally 

converged. Furthermore, in the simulations 

performed with the pulses, the temperature in this 

region gets very high values which can lead to a non-

linearity in the results, since the air properties are 

affected by the heating pulse. The DGF approach is 

valid for linear equations and an improvement in the 

equations, using a linearization method must be 

applied in order to improve the results in this region 

of the geometry. 
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Figure 3. a) Backward-facing step geometry analyzed. b) 

Velocity field in the backward-facing step calculated with 

Ansys Fluent. c) Heat flux distribution used for the 

validation of the DGF approach. 

The imposed heat flux is positive sinusoidal and it 

has been implemented in the bottom surface of the 

backward-facing step. The amplitude of the pulse is 

1000 W/m2 and follows a sinusoidal distribution. As 

stated, the area varies depending on the 

discretization and therefore the imposed heat rate at 

each surface varies as well. 

 

 

Figure 4. Values of the DGF coefficients in the main 

diagonal, sub-diagonals and super-diagonals of the Green 

Function matrix for the baseline case. 

 

The different area of the discretization must be 

accounted in the calculation since the pulse is in 

Watts and in the Discrete Green Function matrix 

must appear this change in the area in order to avoid 

discontinuities in the calculation of the temperature 

at the wall. This is the reason of the steps in the 

values of the main diagonal coefficients of the DGF 

matrix represented in Figure 4. The representation of 

the main diagonal is fundamental to understand the 

behavior of the heat transfer along the bottom 

surface.  

If we neglect the steps in the values where the heat 

rate provided from the surface has change, we can 

observe than the heat flux increase in the region 

where the recirculation bubble is located and 

achieves the maximum at the stagnation point. 

Downstream of the stagnation point the value of the 

main diagonal decreases due to the development of 

the boundary layer. 

 

Figure 5. a) Comparison between CFD and DGF 

approach at 250K. b) Comparison between CFD and 

DGF approach at 4 bar. c) Comparison between CFD and 

DGF approach at Mach 0.85. 
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Figure 4 presents two superdiagonals and two 

subdiagonals, which represent the temperature 

effect of an imposed heat pulse in the adjacent strips 

to the analyzed strip. We can observe that they are 

close to 0, but its sign changes depending on the 

direction of the flow. Therefore in the stagnation 

point we observe that the line corresponding to the 

superdiagonal (p=+1) and the one corresponding to 

the subdiagonal (p=-1) are crossed. This means that 

the convection phenomena is mainly carried out due 

to the adjacent strip due to the velocity of the flow. 

The methodology has been validated for different 

conditions of temperature, pressure and velocity 

represented in the (put reference of the next figures), 

where we can observe a good agreement for inlet 

flow temperature of 250K (Figure 5a)) and for an 

inlet pressure of 4bar (Figure 5b)).  

 At Mach numbers greater than 0.3 the equation (9) 

based in the recovery factor obtained using the 

equation (10) is unpractical. For complicated 

geometries, the range of Mach numbers in the 

recirculation and reattachment zone is large and the 

estimation of the adiabatic wall temperature must be 

based in the local Mach number. 

INFLUENCE OF REYNOLDS NUMBER AND 
SURFACE TEMPERATURE 

Different boundary conditions have been applied 

in order to validate the results in all possible 

conditions of velocity, pressure and temperature at 

the inlet of the domain. The effect of the different 

conditions in the value of the DGF coefficients and 

in the calculation of the Nusselt and Stanton number 

is represented in the figures displayed in this section. 

The main objective of the DGF approach is to 

eliminate the dependence of the convective 

descriptor from the upstream temperature. In the 

Figure 6a), we can observe the independence of the 

value of the main diagonal DGF matrix calculated at 

different inlet total temperatures with the same 

conditions of pressure and velocity. It shows a good 

agreement in these values having a noticeable 

different where the velocity is higher in the outlet of 

the domain. 

The Nusselt and the Stanton number are calculated 

using the inverse array of coefficients G-1 [5]. To 

compare the data with the literature obtained these 

dimensionless numbers must be defined based in the 

heat flux applied and the increment of temperature 

associated at each axial location. The increase of 

temperature related to a constant heat flux boundary 

is expressed by equation (6), where 𝑞̇ is the heat flow 

vector defined with as many constant values 𝑄̇ as 

strips there are in the geometry. Then, the local 

Nusselt number is defined from 

𝑁𝑢𝑖 =

(
Q̇

∆𝑇𝑗1
) 𝐿

𝑘
 

(11) 

 

Where k is the thermal conductivity of the air and 

the considered characteristic length is the double of 

the size of the step [6].The Stanton number also is 

defined locally using the previously calculated local 

Nu number, Re number and Pr number. Both Re and 

Pr numbers are calculated with the conditions at the 

inlet of the geometry. 

𝑆𝑡𝑖 =
𝑁𝑢𝑖

𝑅𝑒 𝑃𝑟
 (12) 

 

 

Figure 6. a) Comparison of the values of the DGF 

coefficients of the main diagonal at different inlet total 

temperatures. b) Comparison of the local Nusselt number 

at different inlet total temperatures. c) Comparison of the 

local Stanton number at different inlet total temperatures. 

The local Nusselt and Stanton numbers calculated 

with the use of the DGF as explained in the 

equations (11) and (12) are presented in the Figure 

6b) and Figure 6c). The values and distribution of 

these dimensionless numbers along the axial 

direction correspond with the expected trends found 

in the literature. The Stanton number and Nusselt 

number have the same trends in this case where the 

upstream temperature is modified, decreasing with 

the increase of temperature. 

Different inlet pressure conditions have been 

evaluated as well. In this case, the different inlet 

properties do introduce a difference in the value of 

the coefficients of the main diagonal. As the pressure 

increase the value increase as well in an almost 

linear manner. 



XXIII Biannual Symposium on Measuring Techniques in Turbomachinery 
Transonic and Supersonic Flow in Cascades and Turbomachines 

 

6  Stuttgart, Germany 

  1 - 2 September 2016 

Regarding the effect on the local Nusselt and 

Stanton number, in this case they do not follow the 

same trends since the Re number is modified in a 

different rate that in the previous case. Therefore, 

while the local Nusselt number increase with the 

pressure, the local Stanton number has the opposite 

trend. This is due to the increase of Re number due 

to the increase of pressure. The Stanton number 

relates the effect of the local shear force at the wall, 

due to viscous drag, to the total heat transfer at the 

wall, hence if the Re number increases, the viscous 

drag increases and the ratio decreases. 

 
Figure 7. a) Comparison of the values of the DGF 

coefficients of the main diagonal at different inlet total 

pressures. b) Comparison of the local Nusselt number at 

different inlet total pressures. c) Comparison of the local 

Stanton number at different inlet total pressures. 

The aerodynamic phenomena and the behavior of 

the flow has been changed also to know the effect of 

an increase in velocity in the calculation of the 

coefficients. The first important conclusion we can 

extract is the impossibility of using the same 

recovery temperature in the whole surface, since the 

Mach number in most of the regions exceeds 0.2. 

Therefore in order to get an accurate validation of 

the case at different velocities we need to define a 

local velocity which will lead to the definition of a 

local recovery temperature.  

If we observe the values of the coefficients after 

applying the recovery temperature approach [6] we 

observe that the trends are similar to the ones found 

with the modification of the pressure, hence the 

Stanton and Nusselt numbers trends have similar 

behaviors as well. Only in the final part of the 

geometry, where the velocity is modified in a larger 

way amongst all the analyzed cases, the heat transfer 

phenomena varies. In the case of a Mach number 

equal to 0.85, the trend in the downstream region is 

different since the reattachment has not happened 

yet at the outlet of the domain. In the upstream part 

near the vertical wall of the step, the behavior is 

similar in all conditions.  

 
Figure 8. Comparison of the values of the DGF 

coefficients of the main diagonal at different Mach 

numbers. 

NUMERICAL UNCERTAINTY 
Mathematically, the process described as the 

Green function approach uses the imposition of an 

infinite magnitude of heat flux in an infinitesimal 

region, known as Dirac delta function. Physically 

and experimentally, this function must be 

approximated defining an area of application and a 

magnitude of the heat flux pulse.  

 
Figure 9. a) Comparison of the values of the DGF 

coefficients of the main diagonal with different 

magnitudes of heat flux pulse. b) Comparison of the local 

Nusselt number with different magnitudes of heat flux 

pulse. 

The uncertainty of the calculations by imposing 

different values of impulse has been evaluated by 
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calculating the sensitivity of the value of the 

coefficients to a variation of the heat flux pulse. In 

Figure 9a) are represented the values of the main 

diagonal of the DGF matrix calculated imposing 

four different magnitudes of the pulse. There is a 

good agreement between all of them, but there are 

differences next to the reattachment of the flow. The 

objective of this section is to evaluate how sensitive 

the calculation is to the magnitude of the pulse. 

Also it has been represented the effect of the pulse 

value variation in the Nusselt number calculation. In 

Figure 9b) the local value is represented, and it can 

be observed that following the procedure described 

in this work to calculate the local Nusselt number the 

value it is independent on the value of the pulse 

magnitude. 

To analyze the sensitivity of the values to the 

magnitude of the pulse, we have modified the pulse 

by 1 unit in the different cases. Therefore we have 

estimated that the uncertainty in the imposed heat 

flux is 0.0001 W/cm2. In Figure 10, it is represented 

the sensitivity in percentage of the value of the main 

diagonal when you apply a pulse of 1W/cm2 and a 

pulse of 0.001W/cm2. We can observe that the 

values with the smaller pulse have an average 

sensitivity near the 3% while with a higher pulse it 

is negligible. The calculated value on the average 

sensitivity is lower than 10-3 %. The regions where 

the velocity is smaller, near the stagnation points 

present higher levels of sensitivity than the rest of 

the rest of the coefficients. 

 

Figure 10. Comparison of the sensitivity of the DGF 

coefficients of the main diagonal due to the uncertainty in 

the heat flux pulse. 

The accuracy in the calculation of the values of the 

matrix it is very important in order to be able to 

calculate the proper temperature distribution on a 

given case. When the pulse is higher, tending to an 

infinite value, the value of the coefficients is more 

accurate and therefore, we can introduce more 

uncertainty in the measurement of the adiabatic wall 

temperature used in the matrix calculation. If we 

combine the uncertainty in the measurement with a 

small magnitude of the imposed pulse, the 

determination of the temperature distribution after 

applying the DGF approach would be shifted and 

therefore we would be unable to predict it. 

If, instead of looking at the values of the DGF 

coefficients of the diagonals, we evaluate the 

uncertainty associated to the final calculation of the 

temperature given the DGF coefficients, we have to 

include the uncertainty associated to the temperature 

measurement. The highest level of uncertainty is 

provided by the increment of temperature associated 

to the heat pulse implementation. This increment is 

associated to both the precision in the definition of 

the adiabatic wall temperature and the magnitude of 

the pulse. Therefore, the uncertainty in the final 

temperature estimation due to the pulse is related to 

the temperature measurements. The smaller the 

magnitude of the pulse, the lower the increment of 

temperature.  

 
Figure 11. a) Uncertainty in the wall temperature 

estimation associated to a heat flux 10 W/m2 and an 

uncertainty in the temperature measurement of 0.5K. b) 

Uncertainty in the wall temperature estimation associated 

to a heat flux pulse of 10000 W/m2 and an uncertainty in 

the temperature measurement of 0.5K. 

In Figure 11a) the uncertainty associated to a 

calculation using pulses of 10 W/m2 and an 

uncertainty in the temperature measurement of 0.5 

K is represented. As it can be observed the 

uncertainty in these temperature measurements is 

too high for the increment of temperature associated 

to the magnitude of the individual pulses, having an 

uncertainty over 500% in the point with less 

variation. In the Figure 11b) we can observe the 
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reduction of this uncertainty when we apply a pulse 

1000 times larger. The uncertainty level of the 

estimation is reduced below the 5% for the same 

level of temperature uncertainty. Therefore the use 

of small magnitude pulses is impractical for the 

estimation of the wall temperature using the DGF 

methodology. 

CONCLUSION 
The Green Function coefficients are calculated as 

invariant descriptors of heat transfer phenomena in 

a backward facing step. These descriptors are 

obtained imposing heat flux pulses of the same 

magnitude at different spatial locations and 

evaluating their effect in change of temperature. 

With this invariant matrix of coefficients we are 

able to predict the heat flux through a surface 

knowing the distribution of temperature over this 

surface. The results have been validated using CFD 

calculations performed with ANSYS Fluent in the 

same representative backward-facing step geometry.  

Variations in the inlet temperature, inlet total 

pressure and the velocity of the flow have been 

introduced to evaluate their effect in the heat flux 

calculation method described in this paper.  

The value of the heat flux pulse applied in the 

calculation of each one of the 42 temperature 

responses is another parameter that has been 

evaluated. The uncertainty of the calculation of the 

coefficients is mainly related to the value of these 

pulses. Moreover, there is a minimum value of heat 

flux pulse which may be experimentally (or 

numerically) applied in order to overcome the 

uncertainty associated to the measurement (or 

calculation) of the adiabatic wall temperature. 

The two parameter associated to the uncertainty in 

the calculation are the measurement of the imposed 

heat flux in each one of the spatial locations and the 

adiabatic wall temperature calculated at the wall. It 

is observed that the uncertainty associated to the 

heat flux affects linearly the sensitivity of the 

coefficients. Therefore a 10% sensitive heat flux 

means 3% variation in the mean value of the green 

function coefficients at the diagonals and a 1% 

sensitivity in the heat flux means 0.3% variation in 

the DGF values of the diagonal. All calculations 

were performed with the same adiabatic wall 

temperature. 

The uncertainty in the temperature measurements 

plays a significant role in the uncertainty of the 

calculations, being even more significant for smaller 

values of heat flux pulses. The use of small 

amplitude pulses is impractical for the estimation of 

the wall temperature due to the high uncertainty 

associated to the temperature measurements. 
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