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ABSTRACT 

A simple optimization method is proposed for 
multi-wire CTA probe design. The optimization 
computes the sensitivities to density, velocity and 
total temperature for each wire, based on empirical 
𝑁𝑁𝑁𝑁 −𝑀𝑀 − 𝑅𝑅𝑅𝑅 and 𝜂𝜂 − 𝑀𝑀 − 𝑅𝑅𝑅𝑅 correlation for 
heated cylinders in compressible flow. This 
correlation is a reasonable estimator for the 
compressibility effect, enabling the reduction to 𝑀𝑀-
independent relation. The output is a set of optimal 
wire temperatures and diameters, recommended for 
probe production. Following the manufacturing, it is 
necessary to calibrate each wire for 𝑅𝑅𝑅𝑅 − 𝑁𝑁𝑁𝑁 
relationship and apply together with the empirical 
compressibility relation. The technique allows the 
use of a single probe with multiple wires across a 
range of transonic flows with various conditions. 
 

NOMENCLATURE 
𝛼𝛼  Angle between the measured voltages 

vector 𝐸𝐸𝑚𝑚𝑚𝑚  and the vector 𝐴𝐴 ⋅ 𝐹𝐹 
𝜁𝜁  Measure of how much ��𝐴𝐴 ⋅ 𝐹𝐹�� falls short 

of its maximum possible value 
𝜂𝜂 Recovery factor, 𝑇𝑇𝑟𝑟/𝑇𝑇0  
𝜃𝜃 Overheat ratio 𝑇𝑇𝑤𝑤/𝑇𝑇0 
𝜅𝜅�𝐴𝐴� Condition number of matrix 𝐴𝐴 
𝜌𝜌 Freestream Flow density 
𝜎𝜎2 Variance of condition number with respect 

to different flow combinations 
𝜏𝜏𝑤𝑤𝑤𝑤  Overheating parameter, (𝑇𝑇𝑤𝑤 − 𝑇𝑇𝑟𝑟)/𝑇𝑇𝑟𝑟  
Φ Compressibility correction function 
 
𝐴𝐴 Probe sensitivity matrix 
𝑑𝑑𝑤𝑤 Wire diameter 
E wires voltages 
𝐸𝐸𝑚𝑚𝑚𝑚  Vector of measured normalized wires 

voltages perturbations 
𝐹𝐹 Vector of decoupled normalized flow 

perturbations 

1 Address all correspondence to this author 

ℎ Convection heat transfer coeff 
𝑘𝑘𝑓𝑓  Thermal conductivity of the fluid 
𝑙𝑙 Wire length 
𝑀𝑀  Freestream Mach number 
𝑚𝑚 [1 + (𝛾𝛾 − 1)/2 ⋅ 𝑀𝑀2 ]−1  
𝑚𝑚𝑡𝑡  𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜇𝜇/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇0 
𝑛𝑛𝑡𝑡  𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑘𝑘𝑓𝑓/𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇0  
𝑁𝑁𝑁𝑁 Nusselt number 
𝑄𝑄𝑤𝑤 Convective heat transfer rate from a wire 
𝑅𝑅𝑅𝑅 Reynolds number 
𝑅𝑅𝑒𝑒𝑇𝑇0 Reynolds number based on wire diameter, 

with viscosity evaluated at 𝑇𝑇0 
𝑆𝑆𝑢𝑢 Sensitivity to velocity perturbation 
𝑆𝑆𝜌𝜌 Sensitivity to density perturbation 
𝑆𝑆𝑇𝑇0 Sensitivity to total temperature perturb 
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 Largest and smallest singular 

values of 𝐴𝐴 
𝑇𝑇0 Freestream flow total temperature 
𝑇𝑇𝑤𝑤 Wire temperature  
Δ𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 Temperature perturbation applied for 

estimate of sensitivity matrix perturb. (𝛥𝛥𝛥𝛥) 
𝑢𝑢 Freestream velocity 
 
(⋅)′ Perturbation of a quantity 
(⋅) Mean of a quantity 
(⋅)i index of flow combination i 
�|⋅|� Frobenius norm  
𝛥𝛥 Small change in quantity 

 
INTRODUCTION 

Constant temperature anemometry (CTA) 
measurements for transonic flow conditions are 
typically very demanding, as there are simultaneous 
perturbations of velocity, density and total 
temperatures. Therefore, defining the attributes of a 
probe to operate under these conditions is non-
trivial. 

Numerous probe design guidelines suggest 
good working practices towards admissible ranges 
of wire length to diameter ratio, wire material and 
coating, prong geometry and system damping [1]. 
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Moreover, for low speed applications, guidelines 
relating the system frequency response to wire 
diameter and overheat ratio exist. In contrast, for 
transonic applications, where the wire diameter and 
its temperature are critical factors, guidelines are 
limited. In transonic flow regimes, the selection 
process of wire diameter and its temperature should 
be driven by density, velocity and temperature 
sensitivities. Therefore, a-priori estimation of the 
probe sensitivities would be useful.  

Historically, by independently varying the flow 
quantities in the transonic region, a direct method 
empirically determines the sensitivities of each wire 
[2]. This is usually accompanied by uncertainties 
and the ill-posing of the sensitivities matrix, 
requiring over-determined methods to reduce noise 
levels [3]. Sometimes a simplification of the 
sensitivities can be used for high overheat ratios [4]. 

In theory, if heat losses which are not associated 
with convection (radiation, conduction losses) are 
well-known, and the probe geometry including the 
wire thickness is well-determined, there exists a 
relation which characterizes the convective heat 
transfer from the hot wire [5]. However, in reality, 
the contribution of these unknowns to the system 
response negate the possibility of creating a 
universal calibration.  

Conventionally, the well-accepted relation of 
heat transfer over a specific wire is given by [6], 

(1) 𝑁𝑁𝑁𝑁 = ℎ𝑑𝑑𝑤𝑤
𝑘𝑘𝑓𝑓

= 𝑓𝑓(𝑅𝑅𝑒𝑒𝑇𝑇0 ,𝑀𝑀,𝜃𝜃),  

 
where 𝑅𝑅𝑒𝑒𝑇𝑇0 is the Reynolds number based on wire 
diameter with viscosity evaluated at 𝑇𝑇0, and the 
overheat ratio is 𝜃𝜃 = 𝑇𝑇𝑤𝑤

𝑇𝑇0
. 

Considering that convective heat transfer rate 
from the wire is 

(2) 𝑄𝑄𝑤𝑤 = 𝜋𝜋𝑑𝑑𝑤𝑤𝑙𝑙ℎ(𝑇𝑇𝑤𝑤 − 𝜂𝜂𝑇𝑇0),  
 

it is implied that ℎ is invariant for small changes 
(~<100K) in surface or gas temperature. However, 
𝑁𝑁𝑁𝑁 dependence on thermal loading has been 
reported. But, for moderately transonic flows (0.5 <
𝑀𝑀 < 0.8) and temperature differentials higher than 
(𝑇𝑇𝑤𝑤 − 𝑇𝑇0) > ~ 70𝐾𝐾, it can be neglected [7]. 
Furthermore, for small 𝑇𝑇0 perturbations, which 
result in small (𝑇𝑇𝑤𝑤 − 𝑇𝑇0) variations, the change in 
𝑁𝑁𝑁𝑁 is insignificant across all 𝑀𝑀. 

Therefore, it can be a good practical 
approximation to assume the reduction of the 
overheat dependency,  

(3) 𝑁𝑁𝑁𝑁 = 𝑓𝑓(𝑅𝑅𝑒𝑒𝑇𝑇0 ,𝑀𝑀).  
 

This representation is consistent with scientific 
community on slip flows over heated wires [8],[9]. 
The applicability of this assumption to transonic 
hotwire anemometry has been demonstrated by [10]. 
 

 

METHODOLOGY 
1. Wire sensitivity evaluation: 

 
Sensitivity based, compressible flow turbulence 

measurements can be described by the individual 
contribution of the velocity, density, and 𝑇𝑇0 
perturbations to the voltage perturbation relative to 
the mean values: 

(4) 𝐸𝐸′

𝐸𝐸
= 𝑆𝑆𝑢𝑢 ⋅

𝑢𝑢′

𝑢𝑢
+ 𝑆𝑆𝜌𝜌 ⋅

𝜌𝜌′

𝜌𝜌
+ 𝑆𝑆𝑇𝑇0 ⋅

𝑇𝑇0
′

𝑇𝑇0
 ,  

 
where 𝐸𝐸 is the wire voltage, (⋅)′ is for perturbation, 
(⋅) is for mean quantities. The sensitivities to 
velocity, density and total temperature perturbations  
𝑆𝑆𝑢𝑢 , 𝑆𝑆𝜌𝜌, 𝑆𝑆𝑇𝑇0 are defined as: 

(5) 𝑆𝑆𝑢𝑢(𝜌𝜌,𝑢𝑢,𝑇𝑇0) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
𝜌𝜌,𝑇𝑇0=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

,  

(6) 𝑆𝑆𝜌𝜌(𝜌𝜌,𝑢𝑢,𝑇𝑇0) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�
𝑢𝑢,𝑇𝑇0=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

,  

(7) 𝑆𝑆𝑇𝑇0(𝜌𝜌,𝑢𝑢,𝑇𝑇0) = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑇𝑇0

�
𝑢𝑢,𝜌𝜌=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

.  

 
For CTA, the derivation of analytical sensitivities, 
utilizing logarithmic derivatives of N𝑢𝑢 − 𝑅𝑅𝑅𝑅 − 𝑀𝑀 
and 𝜂𝜂 − 𝑀𝑀 − 𝑅𝑅𝑅𝑅 relationships, are portrayed in [6]: 

(8) 𝑆𝑆𝜌𝜌 = 0.5 � 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅𝑇𝑇0

− 1
𝜏𝜏𝑤𝑤𝑤𝑤

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅𝑇𝑇0

�,  

(9) 𝑆𝑆𝑢𝑢 = 𝑆𝑆𝜌𝜌 + 1
2𝑚𝑚

�𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

− 1
𝜏𝜏𝑤𝑤𝑤𝑤

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�,  

(10) 𝑆𝑆𝑇𝑇0 = 0.5 �𝑛𝑛𝑡𝑡 + 1 −𝑚𝑚𝑡𝑡
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅𝑇𝑇0

− 𝜃𝜃
𝜃𝜃−𝜂𝜂

+
1
𝜏𝜏𝑤𝑤𝑤𝑤

� 1
2𝑚𝑚

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

+ 𝑚𝑚𝑡𝑡
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕 𝜂𝜂

𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝑅𝑅𝑅𝑅𝑇𝑇0
� − 1

2𝑚𝑚
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕

�. 

 
An example of a convenient semi-empirical 

formulation for infinite length wires is provided in 
[8], 

(11) 𝑁𝑁𝑁𝑁�𝑅𝑅𝑅𝑅𝑇𝑇0 ,𝑀𝑀� = 𝑁𝑁𝑁𝑁�𝑅𝑅𝑅𝑅𝑇𝑇0 ,∞� ⋅ 𝛷𝛷�𝑅𝑅𝑅𝑅𝑇𝑇0 ,𝑀𝑀�. 
 
This formulation states in a disjoint manner the 
Mach independent behavior of 𝑁𝑁𝑁𝑁, 𝑁𝑁𝑁𝑁�𝑅𝑅𝑅𝑅𝑇𝑇0 ,∞�, and 
the compressibility correction, Φ�𝑅𝑅𝑅𝑅𝑇𝑇0 ,𝑀𝑀�. 
For convenience, the empiric relations are repeated 
here: 

(12) 𝑁𝑁𝑁𝑁�𝑅𝑅𝑅𝑅𝑇𝑇0 ,∞� = 𝑅𝑅𝑅𝑅𝑇𝑇0
𝑛𝑛 �0.14 + 0.2302 ⋅

�
𝑅𝑅𝑅𝑅𝑇𝑇0

0.7114

15.44+𝑅𝑅𝑅𝑅𝑇𝑇0
0.7114� + � 0.01596

0.3077+𝑅𝑅𝑅𝑅𝑇𝑇0
0.7378� ⋅ �

15
15+𝑅𝑅𝑅𝑅𝑇𝑇0

3 ��, 

(13) 𝑛𝑛 = 1 − 0.5 ⋅ �
𝑅𝑅𝑅𝑅𝑇𝑇0

0.6713

2.571+𝑅𝑅𝑅𝑅𝑇𝑇0
0.6713�,  

(14) Φ�𝑅𝑅𝑅𝑅𝑇𝑇0 ,𝑀𝑀� = 1 + 𝐴𝐴(𝑀𝑀) ⋅ �1.834 −

1.634 �
𝑅𝑅𝑅𝑅𝑇𝑇0

1.109

2.765+𝑅𝑅𝑅𝑅𝑇𝑇0
1.109�� ⋅ �1 + �0.3 − 0.065

𝑀𝑀1.67� ⋅

� 𝑅𝑅𝑒𝑒𝑇𝑇0
4+𝑅𝑅𝑒𝑒𝑇𝑇0

��, 

(15) 𝐴𝐴(𝑀𝑀) = 0.6039
𝑀𝑀

+ 0.5701 �� 𝑀𝑀1.222

1+𝑀𝑀1.222�
1.569

− 1�. 

 
Thus, implementing the assumption of Eq (3), along 
with the logarithmic derivation of 𝑁𝑁𝑁𝑁 and 𝜂𝜂 relations 
from Ref. [8], estimation of individual wire 
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sensitivities is possible. This is inline with the 
hypothesis of universal calibration procedure 
described in [11]. Therefore, this solution can be 
used towards an optimization of the multi-wire 
probe sensitivity matrix for either a specific or a 
broad range of flow conditions.  

Generally, the use of the universal relations 
mentioned above must be applied with caution. The 
validity of the correlations is only for infinitely long 
wires with defined exact diameters. Accounting for 
the end loss correction improves the sensitivity 
estimate [12][13], however wire-specific calibration 
is still necessary for a reasonable accuracy. 
Therefore, it is advisable to empirically calibrate 
each probe before use and not rely on estimated 
sensitivities. On the other hand, it was demonstrated 
that the compressibility correction Φ and the 
recovery 𝜂𝜂 correlation can still be applied to real, 
finite wires [10].  

In order to characterize the trends associated 
with selected wire diameters and temperatures, as a 
first order approximation, the use of full empirical 
relations is sufficient. Therefore, this investigation 
utilizes the formulations outlined in Ref. [8]. 

 
2. Probe sensitivity matrix 

 
For compressible transonic flow with work 

edition (common in turbomachinery applications), 
perturbations in local velocity, density and 
stagnation temperature are expected. In order to 
deduce the measured voltage fluctuations into 
different flow perturbations, a minimum of 3 wires 
with different sensitivities are required. Then, each 
probe (based on the number of wires -3, 4, or more) 
will have its own sensitivity matrix.   

For example, a sensitivity matrix 𝐴𝐴 for a 4 wire 
probe would satisfy the following equation: 

(16) 𝐴𝐴 ⋅ 𝐹𝐹 = 𝐸𝐸𝑚𝑚𝑚𝑚 ,  
where 

(17) 𝐴𝐴 =

⎣
⎢
⎢
⎢
⎡
𝑆𝑆𝑢𝑢1 𝑆𝑆𝜌𝜌1 𝑆𝑆𝑇𝑇01
𝑆𝑆𝑢𝑢2 𝑆𝑆𝜌𝜌2 𝑆𝑆𝑇𝑇02
𝑆𝑆𝑢𝑢3 𝑆𝑆𝜌𝜌3 𝑆𝑆𝑇𝑇03
𝑆𝑆𝑢𝑢4 𝑆𝑆𝜌𝜌4 𝑆𝑆𝑇𝑇04⎦

⎥
⎥
⎥
⎤
 ;  𝐹𝐹 =

⎝

⎜
⎜
⎜
⎛

𝑢𝑢′

𝑢𝑢
𝜌𝜌′

𝜌𝜌
𝑇𝑇0′

𝑇𝑇0⎠

⎟
⎟
⎟
⎞

 ;𝐸𝐸𝑚𝑚𝑚𝑚 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝐸𝐸1′

𝐸𝐸1
𝐸𝐸2′

𝐸𝐸2
𝐸𝐸3′

𝐸𝐸3
𝐸𝐸4′

𝐸𝐸4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

 
Overdetermined systems as such can allow greater 
resolution of individual flow quantities 
(instantaneous density, velocity, and temperature), 
along with decreased noise amplification. 

 
3. Selection of the cost function: 
 

Based on a set of wire diameter and temperature 
constrains, the optimization method determines the 
optimal combination of wire properties in a given 
probe within the allowable range over a range of 

flow conditions for a given cost function. The choice 
of the cost-function for the optimization is arbitrary. 
There are no clear demands that can define a cost 
function in a unique manner.  

The optimization evaluates the sensitivity 
matrix for all combinations of wire diameters and 
temperatures at different flow conditions. In 
following, according to the cost function selected, a 
“grade” is assigned to each probe based on all the 
calculated sensitivity matrixes stemming from 
various flow parameter combinations.  

Towards formulating the cost function, the 
condition number of matrix 𝜅𝜅�𝐴𝐴� can be a useful 
parameter. Since the ultimate goal is to decouple the 
separate perturbations by solving Eq. (16), the 
quality of the solution depends on the well-
posedness of the sensitivity matrix �𝐴𝐴�. Higher 
condition number indicates a larger manifestation of 
the error from the input wire-voltages vector in the 
output set of flow perturbations. There are a 
multitude of ways in computing the condition-
number of a matrix; in this investigation, Singular 
Value Decomposition (SVD) is used, 

(18) 𝜅𝜅�𝐴𝐴� = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚
𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

,  

 
where 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 correspond to the largest and 
smallest singular values. 𝜅𝜅�𝐴𝐴� represents the 
accuracy of pseudo-inverting a non-square over-
defined matrix via least square fitting. 

Another relevant parameter may be the 
robustness of the matrix condition number across a 
wide range of flow conditions. Such robustness can 
be represented by the variance of the condition 
numbers of all matrixes related to a single probe: 

(19) 𝜎𝜎2 = (𝜅𝜅𝑖𝑖 − 𝜅𝜅𝑖𝑖)2  
 
Here 𝜅𝜅𝑖𝑖 is a short notation for 𝜅𝜅�𝐴𝐴𝑖𝑖�, index 𝑖𝑖 
indicates the different flow conditions evaluated.  

Looking for other possible cost function 
objectives, it is possible to directly consider the 
voltage noise propogation in the solution vector 𝐹𝐹, 
described in Ref. [14] at chapter 18, 

(20) ��𝛥𝛥𝛥𝛥��

��𝐹𝐹��
≤ 𝜅𝜅�𝐴𝐴�

𝜁𝜁⋅𝑐𝑐𝑐𝑐𝑐𝑐(𝛼𝛼)

��𝛥𝛥𝐸𝐸𝑚𝑚𝑚𝑚��

��𝐸𝐸𝑚𝑚𝑚𝑚��
, 

 

 
where 𝛼𝛼 is the angle between the measured voltages 
vector 𝐸𝐸𝑚𝑚𝑚𝑚  and the vector 𝐴𝐴 ⋅ 𝐹𝐹 (range of 𝐴𝐴). The 
deviation is due to the inability of the columns of 𝐴𝐴 
to map the entire domain of 𝐸𝐸𝑚𝑚𝑚𝑚. Small 𝛼𝛼 would 
result in a better fit of the decoupled flow 
perturbations 𝐹𝐹. 𝜁𝜁 is the measure of how much 
��𝐴𝐴 ⋅ 𝐹𝐹�� falls short of its maximum possible value, 

(21) 
𝜁𝜁 =

��𝐴𝐴����𝐹𝐹��

��𝐴𝐴⋅𝐹𝐹��
  ;  1 ≤ 𝜁𝜁 ≤ 𝜅𝜅�𝐴𝐴�. 

 

 
Alternatively, another source of noise arises 

from the inaccurate determination of sensitivity 
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matrix 𝐴𝐴 in an experimental setting. Typically, this 
would manifest itself from an error in the evaluated 
wire temperature; and therefore a probe, which is 
less sensitive to slight deviations in wire 
temperature, may be desirable. The errors of the 
solution vector 𝐹𝐹 due to sensitivity matrix noise can 
be written as [14], 

(22) ��𝛥𝛥𝛥𝛥��

��𝐹𝐹��
≤ �𝜅𝜅�𝐴𝐴�

2
𝑡𝑡𝑡𝑡𝑡𝑡(𝛼𝛼)
𝜁𝜁

+ 𝜅𝜅�𝐴𝐴��
��𝛥𝛥𝛥𝛥��

��𝐴𝐴��
, 

 

 
where Δ𝐴𝐴 is the sensitivity matrix error estimate 
computed by the maximum of all possible wire 
temperature perturbation (Δ𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) combinations. 
More specifically, Δ𝑇𝑇𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = ±1𝐾𝐾 is considered; 
other values (±2𝐾𝐾 or ±5𝐾𝐾) yield similar results. In 
this investigation, the matrix norm ��𝐴𝐴�� and the 

perturbation norm ��Δ𝐴𝐴�� are calculated using the 
Frobenius norms.  

Addressing the angle 𝛼𝛼 and 𝜁𝜁 is not in the scope 
of this paper, as additional analysis in artificial 
voltage signal simulation is required in order to 
minimize 𝛼𝛼 and maximize 𝜁𝜁. Therefore, ignoring the 
contribution of 𝛼𝛼 and 𝜁𝜁 to the problem, the Eq. (20) 
and Eq. (22) reduce to,  

(23) ��Δ𝐹𝐹��

��𝐹𝐹��
≤ 𝜅𝜅�𝐴𝐴�

��Δ𝐸𝐸𝑚𝑚𝑚𝑚��

��𝐸𝐸𝑚𝑚𝑚𝑚��
, 

 

(24) ��𝛥𝛥𝛥𝛥��

��𝐹𝐹��
≤ 𝜅𝜅�𝐴𝐴�

��𝛥𝛥𝛥𝛥��

��𝐴𝐴��
. 

 

 
Thence, in order to improve invertabillity and 

minimize the amplification of the errors into the 
decoupled flow perturbations, we are interested in 

minimizing 𝜅𝜅�𝐴𝐴�
��Δ𝐴𝐴��

��𝐴𝐴��
 and 𝜅𝜅�𝐴𝐴�

��Δ𝐸𝐸𝑚𝑚𝑚𝑚��

��𝐸𝐸𝑚𝑚𝑚𝑚��
. However, 

as the normalized error in voltage, 
��Δ𝐸𝐸𝑚𝑚𝑚𝑚��

��𝐸𝐸𝑚𝑚𝑚𝑚��
, can not 

be accurately predicted, then the latter objective 
reduces to minimizing 𝜅𝜅�𝐴𝐴� alone. 

From another perspective, we are interested in 
detecting small perturbations, and therefore need the 
sensitivity values to be larger; this translates into 
maximization of ��𝐴𝐴��. This is inline with 

minimizing 𝜅𝜅�𝐴𝐴�
��Δ𝐴𝐴��

��𝐴𝐴��
; however, 𝜅𝜅�𝐴𝐴� is the 

dominant factor, and for a single-value objective 

function, minimization of 𝜅𝜅�𝐴𝐴�
��Δ𝐴𝐴��

��𝐴𝐴��
 is drawn 

towards the smaller condition number, without any 
control of the matrix norm.  

Thus, a value function of two objectives is 
proposed, 

(25) 𝑉𝑉𝑉𝑉𝑉𝑉 = 𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑚𝑚𝑚𝑚𝑚𝑚�𝐴𝐴 ⋅
�𝜅𝜅�𝐴𝐴���𝛥𝛥𝛥𝛥������������������

𝑚𝑚𝑚𝑚𝑚𝑚

𝜅𝜅�𝐴𝐴���𝛥𝛥𝛥𝛥����������������� ,𝐵𝐵 ⋅
��𝐴𝐴��������

��𝐴𝐴��������
𝑚𝑚𝑚𝑚𝑚𝑚

��, 

 

where �𝜅𝜅�𝐴𝐴� ��𝛥𝛥𝛥𝛥������������������
𝑚𝑚𝑚𝑚𝑚𝑚

, ��𝐴𝐴��������
𝑚𝑚𝑚𝑚𝑚𝑚

 are the minimal and 
maximal values of the considered probe collection. 
With this normalization, the range of the 
optimization objectives individually span between 0 
and 1. A max-min formulation is used in the case of 
convex Pareto front shape. This value function 

maximizes ��𝐴𝐴�������� and 1

𝜅𝜅�𝐴𝐴���Δ𝐴𝐴�����������������, and thus minimizing 

𝜅𝜅�𝐴𝐴���Δ𝐴𝐴�����������������

��𝐴𝐴��������  as desired. The weights A and B are the 

choice of the user and it should be noted that the 
larger weight draws the result to the other objective.  

 
4. Input parameters: 

In the current investigation, it is possible to 
conduct an optimization towards a robust probe 
that can perform reasonably well in a broad 
spectrum of mean flow conditions or an optimal 
probe for a very specific mean flow condition.  

(a) Wide range of mean flow conditions: 
The maximal stagnation pressure ratio of 

1.7 is chosen considering a typical highly 
loaded fan stage in a turbomachinery propulsion 
application. The upper limit on the total flow 
temperature is calculated using the isentropic 
flow relations corresponding to the 
compression. The density is deduced from the 
ideal gas state equation. Encompassing a wide 
range of mean flow conditions, total of 60 
combinations are examined from the following 
ranges: 

𝟎𝟎.𝟓𝟓 ≤ 𝑴𝑴 ≤ 𝟎𝟎.𝟗𝟗, 
𝟐𝟐𝟐𝟐𝟐𝟐𝟐𝟐 ≤ 𝑻𝑻𝟎𝟎 ≤ 𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑, 
𝟏𝟏𝟏𝟏𝟏𝟏𝟏𝟏 ≤ 𝑷𝑷𝟎𝟎 ≤ 𝟏𝟏.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕. 

 
(b) Specific mean flow condition: 

In order to demonstrate specific mean flow 
condition optimization, a single mean flow is 
selected from the wide flow range, 𝑀𝑀 =
0.9,𝑇𝑇0 = 290𝐾𝐾,𝑃𝑃0 = 1.7𝑎𝑎𝑎𝑎𝑎𝑎.  

 
(c) Wire parameters: 

Wire diameters are limited in the lower 
range by structural, operability, and 
manufacturing considerations, and in the upper 
limit by the decreased circuit resistance, and 
reduced frequency response. Moreover, to 
prevent oxidation of a tungsten wire, the upper 
temperature is not to exceed 250°𝐶𝐶 [1]. Thence, 
the ranges of wire properties for the 
optimization are: 

𝟓𝟓𝟓𝟓𝟓𝟓 ≤ 𝒅𝒅𝒘𝒘 ≤ 𝟏𝟏𝟏𝟏 𝝁𝝁𝝁𝝁 
𝟑𝟑𝟑𝟑𝟑𝟑𝟑𝟑 ≤  𝑻𝑻𝒘𝒘 ≤ 𝟓𝟓𝟓𝟓𝟓𝟓𝟓𝟓 

 
RESULTS 

The input parameters for the optimization are 
the mean flow quantities of Mach number, total 
temperature, and total pressure (corresponding to 
distinct velocity, density and temperature 
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conditions) Probes comprising of 3 and 4 wires are 
examined. The number of wire diameters is limited 
in order to shorten the computation time. The 
specific diameters considered are 
5, 6.5, 8.5, 10[𝜇𝜇𝜇𝜇], and the wire temperatures 
examined are 370: 10: 510[𝐾𝐾]. The overall number 
of combinations with repetitions for 3 and 4 wire 
probes are 34,220 and 590,295 respectively. 

 
(a) Wide range of mean flow conditions 

For a 4-wire probe, Figure 1 presents the inverse 
of the condition number with respect to a broad 
range of flow conditions and probe wire diameter 
and temperature combinations. Clearly, some probe 
wire diameter and temperature combinations 
produce better condition numbers overall; higher 
inverse condition numbers are more desirable. 

 
Figure 1 – Inverse condition number of all 4 wire 
probe combinations for broad range of mean flow 
properties 

As a desired potential objective for 
optimization, the probe mean condition number and 
its variance with respect to differing flow conditions 
are charted in Figure 2. The results are normalized 
by the minimum mean condition number (𝜅𝜅𝑚𝑚𝑚𝑚𝑚𝑚) and 
the minimum variance (𝜎𝜎𝑚𝑚𝑚𝑚𝑚𝑚2 ) of a probe in the entire 
population. Evidently, the 𝜎𝜎2 and 𝜅𝜅�𝐴𝐴� parameter 
are positively correlated (improving one also 
improves the other). Thus, minimizing one is 
sufficient for optimization of both variables, 
corresponding to the desired region in the top right 
corner of the figure. Therefore, it is sufficient to 
choose 𝜅𝜅�𝐴𝐴� as an optimization objective.  

In this light, other important parameters for the 
probe optimization are the condition number 𝜅𝜅�𝐴𝐴�, 
as well as the 𝜅𝜅�𝐴𝐴� ��𝛥𝛥𝛥𝛥�� term, Eq. (23) and Eq. 
(24) respectively. Figure 3 charts a map of inverse 
normalized mean condition number with respect to 
inverse normalized mean norm of matrix 
perturbation for all 4-wire probes considered. 
Evidently, the ��𝛥𝛥𝛥𝛥�� and 𝜅𝜅�𝐴𝐴� parameters are also 
positively correlated; so minimizing only one of the 

variables is sufficient. Similarly, it is possible to 
select the multiplication of the two quantities 
𝜅𝜅�𝐴𝐴� ��𝛥𝛥𝛥𝛥�� as an objective for the optimization. 

 

 
Figure 2 – Map of inverse normalized mean condition 
number vs. inverse normalized mean norm of matrix 
perturbation for all 4-wire probe combinations 

 
Figure 3 – Map of inverse normalized mean condition 
number vs. inverse normalized mean norm of matrix 
perturbation for all 4-wire probe combinations 

Considering this corollary along with the 
significance of matrix norm, the value function 
described in Eq. (2525) is the natural choice for 
optimization. The examined weighting 
combinations of the following results are presented 
in Table 1. 
 

Table 1: Weighting of Value Functions 

Value Function # A B 
1 0.99 0.01 
2 0.70 0.30 
3 0.50 0.50 
4 0.40 0.60 
5 0.10 0.90 
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Figure 4 portrays a map of the two objectives 
�𝜅𝜅�𝐴𝐴���𝛥𝛥𝛥𝛥������������������

𝑚𝑚𝑚𝑚𝑚𝑚

𝜅𝜅�𝐴𝐴���𝛥𝛥𝛥𝛥����������������� ,
��𝐴𝐴��������

��𝐴𝐴��������
𝑚𝑚𝑚𝑚𝑚𝑚

, for all possible 4-wire probe 

combinations.  

 
Figure 4 – Map of the two objectives for all 4-wire 
probes combinations 

In this optimization, Obj1 and Obj2 are both 
maximized. The most desirable probe is in the top 
right corner of the chart, and hence, there are no 
universally dominant probes; instead they are 
scattered along a convex Pareto front. The 
optimization results for the 5 different value 
functions are superimposed by red symbols. 

Selecting the desired probe from the Pareto front 
requires analyzing in detail the characteristic 
performance. Although it is possible to treat each 
objective as a criteria, the critical threshold to the 
decoupling is associated with the invertability of the 
matrix which is characterized by the condition 
number. Therefore, the condition numbers of the 
best 4-wire-probes are charted for the various value 
functions across the considered flow conditions, 
Figure 5a-e. The particular traits of the resulting 
probes can be found in Table 2. 

 
Table 2: Best 4-wire Properties for Value Functions 

Val 𝑑𝑑𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  [𝜇𝜇𝜇𝜇] 𝑇𝑇𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤  [K] 
1 5 5 5 6.5 370 370 380 370 
2 5 5 10 10 410 430 400 450 
3 5 5 10 10 430 460 430 460 
4 5 5 10 10 450 460 440 480 
5 5 5 10 10 500 510 500 510 

 

For value function 1, Figure 5a presents a choice 
favoring large matrix norm over a minimal 
𝜅𝜅�𝐴𝐴� ��𝛥𝛥𝛥𝛥��. The ensuing probe consists of 5µm, 
5µm, 5µm, and 6.5µm wires at 370K, 370K, 380K, 
and 370K respectively. Although the voltage 
sensitivity to changes in flow properties is 
amplified, the resulting condition numbers are 
mostly in the 1000-5000 range. This deems the 
configuration inadmissible. 

Figure 5b-d are charts presenting the condition 
number for the best probes resulting from value 
functions 2-4. These configurations all yield wire 
diameters as far apart as possible at the limits of the 
constraint, two 5µm and two 10µm wires. The 
corresponding wire temperatures are spread over the 
intermediate range of 400K-480K. The wires with 
identical diameter do not correspond to the same 
temperature. The system of equations does not seem 
to favor redundant wire systems. Throughout the 
entire flow range, the corresponding condition 
numbers are less than 1000 for all three probes. 
Expectedly, due to weighting that favors the lower 
condition-number probe preferences, the value 
function 4 yields slightly lower 𝜅𝜅�𝐴𝐴�. In general, the 
condition numbers rise for higher Mach number and 
higher total temperature flows. Moreover, there 
exists a strong and adverse effect of density: the 
higher the density, the bigger the condition number. 
However, all three probes are acceptable from an 
invertability perspective.  
For value-function 5 that strongly favors 𝜅𝜅�𝐴𝐴� over 
the norm, the results are presented in Figure 5e. The 
probe configuration associated still yields two 5µm 
and two 10µm wires, with temperatures of 500K and 
510K pairs. Considering that the optimization has 
reached the upper limit in the wire temperature 
constrain, and that the temperature values are very 
close to each other, the probe configuration is less 
desirable.  

In summary, according to the admissible probes 
from value function 2-4, spreading the choice of 
wire diameters to pairs in the upper and lower 
constraints is recommended. Moreover, the 
temperatures have a tendency to be sufficiently far 
apart from one another (10K-40K) concentrated 
around ~450K. 
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a) Best Probe for 𝑉𝑉𝑉𝑉𝑉𝑉1,𝐴𝐴 = 0.99 ;𝐵𝐵 = 0.01 

 

 
b) Best Probe for 𝑉𝑉𝑉𝑉𝑉𝑉2,𝐴𝐴 = 0.7 ;𝐵𝐵 = 0.3 

 

 
c) Best Probe for 𝑉𝑉𝑉𝑉𝑉𝑉3,𝐴𝐴 = 0.5 ;𝐵𝐵 = 0.5 

 

 
d) Best Probe for 𝑉𝑉𝑉𝑉𝑉𝑉4,𝐴𝐴 = 0.4 ;𝐵𝐵 = 0.6 

 

 
e) Best Probe for 𝑉𝑉𝑉𝑉𝑉𝑉5,𝐴𝐴 = 0.1 ;𝐵𝐵 = 0.9 

 

 
 

 
 

 
Figure 5 - Condition numbers of best 4-wire probe for all value functions 
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In order to assess the dependency of the 
optimization on the number of wires in the probe, 
Figure 6 is a representative example, contrasting the 
condition numbers of best 3-wire and 4-wire probes 
for value function 4 at T0 = 350𝐾𝐾. For value 
function 4, the best 3-wire probe wire diameters and 
temperature are 𝑑𝑑𝑤𝑤 = 5,5,10[𝜇𝜇𝜇𝜇] ;𝑇𝑇𝑤𝑤 =
440,480,450[𝐾𝐾] respectively. In general, the 
condition number for a 3 wire probe is slightly worse 
than a 4-wire probe. In order to demonstrate the 
ramifications associated with noise amplification, 

Figure 7 directly charts the 𝜅𝜅�𝐴𝐴�
��Δ𝐴𝐴��

��𝐴𝐴��
 term for the 

same probes. It is apparent that the noise 
amplification is lower for conditions producing 
lower condition number. And, in general, 4 wire 
probes result in reduced noise amplification. Similar 
trends can be observed for other value functions. 
 

 
Figure 6 – Contrasting the Condition numbers of best 
4-wire and 3-wire probes for Value function 4 at 𝑇𝑇0 =
350𝐾𝐾 

 
Figure 7 – Contrasting the error amplification due to 
sensitivity matrix perturbation for best 4-wire and 3-
wire probes, Value function 4 at 𝑇𝑇0 = 350𝐾𝐾 

 

(b) Specific mean flow condition 

The particular flow condition selected for the 
optimization (𝑀𝑀 = 0.9,𝑇𝑇0 = 290𝐾𝐾,𝑃𝑃0 = 1.7𝑎𝑎𝑎𝑎𝑎𝑎) 
yields a relatively high condition number. For 
example, in the wide flow range optimization, the 
best probe of value function 4 is: 𝑑𝑑𝑤𝑤 =
5, 5, 10, 10[𝜇𝜇𝜇𝜇] ;𝑇𝑇𝑤𝑤 = 450, 460, 440, 480 [𝐾𝐾] 
respectively. The corresponding condition number is 

563, and 𝜅𝜅�𝐴𝐴�
��Δ𝐴𝐴��

��𝐴𝐴��
= 3.76. A single-flow 

optimization for the same value function, resulted in 
a probe with same wire diameters, but different wire 
temperatures. 𝑑𝑑𝑤𝑤 = 5,5,10,10[𝜇𝜇𝜇𝜇] ;𝑇𝑇𝑤𝑤 =
460,490,450,510[𝐾𝐾] respectively. Its condition 

number is 529, and 𝜅𝜅�𝐴𝐴�
��Δ𝐴𝐴��

��𝐴𝐴��
= 3.24. Slightly 

improving the flow-specific condition number and 
the over-all error criteria. 
 
SUMMARY AND CONCLUSIONS 

In order to select CTA probe’s wire properties 
such that the resultant system will have high 
sensitivity to flow properties and low noise 
amplification, an optimization methodology is 
presented. Based on empirical N𝑢𝑢 − 𝑅𝑅𝑅𝑅 − 𝑀𝑀 and 
𝜂𝜂 − 𝑅𝑅𝑅𝑅 − 𝑀𝑀 correlations, the technique is applicable 
to the compressible M regime with total pressures 
and temperatures characteristic to a highly loaded 
fan stage. Towards future implementation in various 
turbomachinery and propulsion applications, some 
general design guidelines can be formulated: 
• The condition number 𝜅𝜅�𝐴𝐴�, which characterizes 

the invertability and the well-posedness of the 
sensitivity matrix, is the dominant characteristic 
quantity in this problem. Typically, systems with 
𝜅𝜅�𝐴𝐴� > 1000 are tending towards being ill-
posed and therefore are not advisable. 

• Selection of the value function can be simplified 
by the notion that the change in variance (𝜎𝜎2)and 
��𝛥𝛥𝛥𝛥�� for different probe combinations is 
positively correlated with the corresponding 
condition number, 𝜅𝜅�𝐴𝐴�. Thus, the need for more 
independent objectives is obviated. 

• Compromising between the two objectives 
associated with minimum error amplification 
and maximizing the sensitivity matrix, the 
chosen value function in max-min formulation is 
presented in Eq. (25). 

• Based on the trends observed in the optimization, 
the probe should consist of wire diameter 
combinations at the extremes of the available 
range (in this case 5 𝜇𝜇𝜇𝜇 and 10𝜇𝜇𝜇𝜇). Therefore, 
the suggested 4-wire probe consist of 5-5-10-
10 𝜇𝜇𝜇𝜇 wires. This selection allows optimizing 
the probe to various flow conditions by solely 
adjusting the wire temperatures. 
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• The corresponding wire temperatures are spread 
over the intermediate range of 400K-480K. The 
wires with identical diameter do not correspond 
to the same temperature. Moreover, the 
temperatures should be sufficiently far apart 
from one another (10K-40K) concentrated 
around ~450K. 

• As expected, 4-wire probes present less noise 
amplification than 3-wire probes, due to the 
overdetermined nature of the system.  

• The presented methodology can be utilized 
either for globally optimal probes or for 
particular flow ranges. 

 
FUTURE WORK 

The current optimization delivers a population 
of probes located on the Pareto line, all of which 
maximize the proposed objectives. Still, there is no 
“single best probe” selection mechanism. Thus far, 
it is up to the user to select the weights, which are 
not easily determined as the comparison between 
different objectives is often not “apples to apples”. 
Therefore, further search for constrains is needed. 
One prospective option is a synthetic wire voltage 
simulation with artificial noise. This may enable the 
optimization of 𝛼𝛼 and 𝜁𝜁. Lastly, in order to establish 
the validity of the proposed methodology, 
experiments will be conducted to compare the flow 
decoupling using optimal and non-optimal probe 
combinations. 
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