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ABSTRACT  

The authors have applied a transfer function 
modeling technique to the calibration of unsteady 
pressure transducers used for unsteady flow 
measurements in turbomachinery. This modeling 
technique has shown to be faster and more precise 
than previously used curve fitting techniques. In 
this article, the authors present the theory applied 
for this identification and give an explicit example 
of its application and advantages. 

This identification can be conducted by feeding a 
generated sine sweep signal, with the desired 
bandwidth and amplitude into the electronic 
amplification system and measuring the frequency 
response of the output with a dynamic signal 
analyzer (Periodic Chirp Response Measurement). 
 
Traditional techniques used to account for the 
effect of the amplifiers on the source signal consist 
of extracting the main harmonics (harmonic signal 
analysis) and getting the corrections corresponding 
to these discrete frequencies by interpolation on the 
Periodic Chirp Response results (amplitude and 
phase versus frequency). 

 
 

INTRODUCTION 
Transfer Functions have been used since the 
beginning of the 19th century to model various 
systems for stability analysis, prediction, 
simulation and control purposes. Applied first to 
mechanical systems, it is now a common modeling 
technique used in numerous fields such as 
electronics, chemistry, economics, and neural 
networks. 

 
As part of the Brite-Euram “Aeromechanical 

Design of Turbine Blades” project (ADTurB I), 
unsteady blade surface measurements were 
conducted on an axial turbine cascade in the Non-
Rotating Annular Test Facility of the “Laboratoire 
de Thermique Appliquée et de Turbomachines” 
(LTT) of the Swiss Federal Institute of Technology 
in Lausanne (EPFL). Two main sources of unsteady 
pressures in turbomachinery were studied 
separately and then in combination for different 
configurations and flow conditions: 

 
Unsteady pressure measurements in 
turbomachinery are commonly conducted with the 
use of unsteady pressure transducers. The signals 
delivered by these piezo-resistive sensors require 
amplification to meet the range of the data 
acquisition devices. In order to do so, analog 
electronic amplifiers are mostly used. Often 
combined with other signal conditioning features 
such as filtering (notch, low-pass), the effect of this 
electronic conditioning on the input signal varies in 
the frequency domain. In order to reconstruct 
precisely the true pressure signal from the acquired 
signal, an accurate description of the transducer’s 
signal amplification chain is necessary. 

 
(1) The influence of blade motion (Controlled 

Vibration Measurements). 
(2) The influence of upstream generated gusts 

(Gust Response Measurements) 
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 NOMENCLATURE 

DAQ Data Acquisition 

 

TF Transfer Function 
a,b,c,d,e,f complex parameters 

, , , , ,a b c d e f  complex parameters 
f frequency 
G(s) transfer function 
g(t) impulse response 
i index 
j 1j = −  

  Laplace transform L
n number of samples 
s complex variable Figure 1 Unsteady DAQ chain characterization 
u(t) input time signal  
R regression matrix  
U input (frequency domain) 
U input Vector TRANSFER FUNCTION MODELING 
v degree of TF numerator Let us consider the unsteady pressure 

transducer DAQ chain has a single input, u(t), 
single output, y(t), system. If we suppose small 
excitations around a nominal frequency (linear 
system hypothesis) we can write the output y(t) as a 
function of the input signal u(t) and of the impulse 
response g(t) as: 

w degree of TF denominator 
y(t) output time signal 
Y output (frequency domain) 
Y  output estimator 
Y output vector 
Y  output estimator vector 
ε  absolute error vector 

 ( ) ( ) ( ) ( ) ( )y t g t u t u t g t dτ τ= ∗ = ⋅ −∫  (1) ϑ  parameter vector 
∗ϑ  optimal parameter vector 

ω  pulsation Taking the Laplace Transform of (1) will allow 
a considerable simplification of the mathematical 
operations: 

* convolution 
 
 

 [ ] [ ] [( ) ( ) ( )y t u t g t= ⋅L L L ]  (2) 
SYSTEM IDENTIFICATION 

Both aerodynamic excitation sources presented 
in the introduction were tested with a common 
excitation frequency of 276 [Hz]. Traditional 
testing of (1) yields in most cases sinusoidal 
pressure fluctuations requiring only the 
characterization of the unsteady pressure 
transducer’s amplification chain around a single 
frequency. On the other hand, the newly installed 
gust generator consisting of rotating elliptical struts 
involve four to seven harmonics requiring the same 
identification for a bandwidth of 250 to 2500 [Hz]. 

Where [ ]( ) ( )G s g t=L  is known as the 
transfer function of the system. (2) becomes: 

 
( )

( ) ( ) ( ) ( )
( )

Y s
s U s G s G s

U s
= ⋅ ⇒ =Y  (3) 

G(s) is always a rational fraction in s where 
the degree of the denominator w is greater than the 
degree of the numerator v in order to have a causal 
transfer function. Several combinations of v and w 
have been tested starting with low values. The first 
qualitatively representative combination of v and w 
are values of 2 and 3 respectively, giving the 
following model: 

This characterization has been conducted using 
a 10 [mV] sine sweep input signal generated by a 
HP35660A dynamic signal analyzer. The frequency 
response of the system consists of 400 samples 
from 75 to 3275 [Hz] (every 8 [Hz]) and is 
represented in figure 1. The effect of the 4 [kHz] 
low-pass filter is clearly visible and shows the need 
for a precise identification of the system, especially 
if one considers the importance of the phase lag 
introduced over the whole measured bandwidth. 

 
2

3 2
( )

as bs c
G s

s ds es f

+ +
=

+ + +
 (4) 
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Using equation (3), (7) becomes:  

Where  and , , , ,a b c d e f  are the complex 
parameters of G(s) to be determined. 

 
2

2

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

e
Y j d j Y j Y j

j

f
Y j a U j

j

b c
U j U j

j j

ω ω ω
ω

ω ω
ω

ω ω
ω ω

= − ⋅ ⋅ −

− + ⋅ +

+

⋅

⋅

⋅ ⋅

ω

 (9) 
If we consider only harmonic inputs and 

neglect the transient behavior of the system (i.e.: 
after the transient response has damped out) then 
the harmonic response is sufficient for this study. 
We can therefore replace s by jω in (4), where 

2 fω π=  is a given pulsation and f the 
corresponding frequency: 

 
2

3 2

( ) ( )
( )

( ) ( ) ( )

a j b j c
G j

j d j e j

ω ω
ω

ω ω ω

+ +
=

+ + + f
 (5) 

Let us introduce the estimated Y value based 
on this relationship: 

 
2

2

( ) ( ) ( ) ( )

( ) ( )
( )

( ) ( )
( )

e
Y j d j Y j Y j

j

f
Y j a U j

j

b c
U j U j

j j

ω ω ω
ω

ω ω
ω

ω ω
ω ω

= − ⋅ ⋅ −

− + ⋅ +

+

⋅

⋅

⋅ ⋅

ω

 (10) 

 
To avoid numerical instability due to large 

pulsation values ω , (5) can be rewritten as:  

 
2

2

( )
( )

( )

i

b c
a

j j
G j

e f
j d

j j

ω ω
ω

ω
ω ω

+ +

=

+ + +

 (6) 
During the identification of the unsteady 

pressure transducer DAQ chain, we collected 
measured values for n different frequencies. 
Therefore we can gather all input and output 
signals in vectors:  

Defining the new complex parameters a, b, c, d 
and f by dividing the numerator and the 
denominator by  yields the final form of the 
model to be used: 

d

 

1( )

( )

( )

i

n

Y j

Y j

Y j

ω

ω

ω

=

 
 
 
 
 
 
  

Y       U  (11) 

1( )

( )

( )

i

n

U j

U j

U j

ω

ω

ω

=

 
 
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
 
 
  

 
2

2
1

( )
( )

( )

b c
a

j j
G j

e f
d j

j j

ω ω
ω

ω
ω ω

⋅

+ +

=
+ + +

 (7) 


Equation (10) can be rewritten for all samples 
using matrix algebra:  

Where: 

 
; ;

1
; ;

a b
a b c

d d
e f

d e f
d d

= = =

= = =

;
c

d

d

 (8) 
 = ⋅Y R ϑ  (12) 

Where is the regression matrix and R ϑ  the 
vector of parameters defined as follows: 

The parameters appear linearly in the input-
output relationship. Only the coefficients vary 
nonlinearly with respect to the frequency (i.e. it is a 
linear combination of non-linear functions). Let us 
proceed with the following regrouping: 

2

2

( )

( )

i i

i
i i

j j

j
j j

ω ω

ω
ω ω

=

− ⋅ − −









U U
R U

Y Y
Y

 (13) 

  (14) [ ]a b c d e f=ϑ T
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It is clear that there exists a mismatch between 

the estimated values Y and the measured onesY . A 
good model (i.e. good parameter vectorϑ ) should 
reduce this mismatch as much as possible. 
Therefore let us introduce the optimal parameter 
vector ∗ϑ  based on a least square criterion and 
defined as: 

A further advantage of this modeling technique 
is that in similar conditions the same model can be 
used again and the parameters quickly computed 
using for example matrix algebra in Matlab®. 

 
Difficulties may arise during the inversion of 
. In our example this matrix was close to 

singular (inversion may be inaccurate) but the 
parameters found produced the results of figure 2. 
In cases where  can not be inverted, it is 
possible to introduce a positive definite scaling 
matrix 

TR R

TR R

∑  in equation (15): 

 ( ) ( )arg min ( ) ( )T

ϑ
ϑ ϑ= − −* Y Y Y Yϑ  (15) 

The optimum is easily computed using (12), 
see (Kay 1988): 

 ( ) ( )arg min ( ) ( )T

ϑ
ϑ ϑ= − −∑ϑ * Y Y Y Y  (17) 

  (16) ( ) 1T T−

=* R R R Yϑ

(16) becomes: 
The estimated values can be computed if  

is invertible. The absolute error between the 
prediction model and the measured values can be 
written as: 

TR R

  (18) ( ) 1T T−

= ∑ ∑ϑ * R R R Y

 
 = −Y Yε  (17)  A judicious choice of the eigenvalues of ∑  

can enable the inversion of , allowing the 
computation of the estimators. 

T ∑R R
For the example given in figure 1, the above 

explained technique applied to the model of (7) 
yields the following results using Matlab® 6.1: 

 
Other difficulties may appear for low 

frequencies where the phase angles become 
negative. In this case, instabilities are produced 
probably due to the violation of the linearity 
assumption. This problem can be avoided by 
rejecting these low frequencies data samples. 

 

 

 
 

CONCLUSIONS 
The use of transfer functions for the modeling 

of commonly used unsteady pressure transducer 
amplification chain has been a success. It has been 
shown that this technique is faster and more precise 
than previously used methods and is particularly 
well suited for on-line corrections on digitized 
unsteady pressure signals. 

 Figure 2 Absolute error of TF model in ‰ 
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