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This study focuses on the statistical aspects of the three-dimensional L2F measurement method.
Because the various quantities are not measured simultaneously, the calculation of the first and
the second order momenta is not available without an non-correlated-variable-hypothesis. A
critical test has been carried out in an axisymmetrical free jet operating in a way where 3D flow
could be measured. Moreover, the turbulence intensity in this flow field could vary from 2% in
the potential core to 50% in the developed flow area. Consequently, an analysis of the
measurement method limitations and efficiency could be developed.

1. Introduction

Due to the increasing demand for improved performances and efficiency of the rotating
machines, there is a growing need for methods to study and analyse the detailed flow
behaviour. In this context, experimental systems allowing accurate measurement of the three-
dimensional flow field in the rotating environment are needed.

The 2D-L2F technique, developed for fifteen years at the L. M.F.A., was extended by Schodl
[1] for three-dimensional measurements in turbomachinery. Schodl along with his co-authors
are the only ones, at the present, time to have carried out measurements with the 3D-L2F
device. First of all, they have made a critical test around a sphere located in the potential core
of an axisymmetrical jet to check the system performances [2], and they have presented some
results at the exit of a propfan test rig [3]. In all these works, three components of the mean
velocity vector and only two standard deviations have been presented but the way they were
calculated has not been described.

In this paper, a statistical calculation method for one and second order momenta and the results
of a critical test carried out in an axisymmetrical free jet are presented. The 3D-L2F is
described first and followed by the statistical analysis, the measurements results and a
conclusion dealing with the method limitations and efficiency.

2. Three-dimensional laser two focus system

2. 1. Measurement principle

The 3D-system consists basically in two 2D-L2F devices which are symmetrically
located on both sides of its rotation axis with a slant y of 7.5 degrees with regard to the
symmetry plane. The two 2D-L2F systems measure the velocity vector projections in their
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respective focal planes (modulus uw; and direction ;) from which the three spherical
components of the total velocity can be calculated. In fact, for a single 2D device, the
measurement is only possible if the velocity vector lies within the plane of the beams. In
figure 1, one could see that the velocity vector which is in the symmetry plane is neither in the
first nor in the second beams plane. Therefore, the velocity vector cannot be measured with
any devices at that orientation. A small turning of ¢, will bring the velocity vector in the beam
plane of the first system and a counter rotation of ¢>= -¢; will bring the flow vector into the
beam plane of the second one. If we call o the angle between the symmetry plane and an
angular reference, two different angles o =ot¢; and o=+, could be measured.
Nevertheless, because of the 3D-system symmetry, we get the same modulus u with the two
2D-devices.

figure I : 3D-L2F device

The following relations between (V, o, B) and (u, o3, o) can be derived from the geometrical
situation (if we note 6=(0(;-012)/2) :

o, + 0L,

: M

B= arctan(:;?li) (2)

1
Fl . tan 26F 3)

==y
cosdcosf L sin2y

It should be noted that if 8 is equal to zero, then both devices detect the same angle o.;=a,

2. 2. Geometrical uncertainties

The laser anemometers (LDA or L2F) allowing the direct measurements of the three
orthogonal velocity components in a Cartesian set could not be found easily. Chesnakas and
Simpson [4] present a three orthogonal-component LDA measuring system to analyse the flow
field behind a prolate spheroid. But other LDA systems met in the literature are non-
orthogonal ones which means that the angle between the optical axis of the third device and
the other two ones differs from a 90 degree angle. This is necessary in turbomachinery where
the optical access is limited.

In non orthogonal devices, as shown by the study of Orloff and Snyder [5], the geometrical
pattern induces that the third velocity component is coupled with the two other ones, so that
systematic errors, especially on the on-axis component, occur in the converting process from
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measurement co-ordinates to orthogonal ones. Consequently, the coupling angle should not
stay below 30 degrees : yet, most of the actual devices provide 15 degree angles.

The same kind of geometrical limitations occurs with our 3D-L2F anemometer. First of all, a
value of 15 degrees was chosen for the angle 2y in order to allow geometrical access even in
narrow gaps, so that o; and a, are correlated variables. Secondly, uncertainties on o,y and o
(Ao and Aay) induce uncertainties on o and B which could be estimated by a first order
Taylor development of formulas 1 and 2 :

r(AO&ﬁAaz (

(8c.08) =| AatAa, ﬁ

| tany cosO
2 )L ! 2 (tan 2y +sin26)

It shows that the higher vy is, the smaller the B uncertainties are, but they also depend on f
values themselves. Assuming Ac;=Aal,, the magnitude of Aa equal the one of Aa; whereas the
one of AB is 5.7 to 7.6 times Aa; (for B varying from 30 to O degrees). It shows that small
uncertainties on the a; and o mean values induce very large errors on the B one. Similar
values could be found in Stauter’s paper [6] for a LDA device with a coupling angle of 16
degrees.

3. Statistical Analysis

3. 1. Two-dimensional-L2F data processing

The 3D-L2F technique is based on the 2D-L2F procedure so that it is interesting to call
up the two-dimensional data processing which requires two steps.

First, a marginal angular probability density function (p.d.f) Po(a) is reached. This p.d.f
allows the calculation of the mean value velocity vector direction, assuming an isotropic
turbulence hypothesis :

a= j aP (a)da

With the associate standard deviation :

&, = | (- @)2P,(0)do
Secondly, in orientating the probe volume parallel to the mean velocity direction, a conditional
p.d.£ of the velocity modulus P()|, could be obtained.
Strictly, the total p.d.f. is given by :

P, (a,u) = P(0) P(u)],
However, if the turbulence is isotropic :

B, (o) = P,() P(u)|;
Then, any statistical quantities could be determined and especially :

u= _l uP, (o, u)dodu = _’ uP, (o) P(w)| dordu = J Pa(a)doc_' uP(u)|;du = J uP(u); du
and :
o?, = J (u— zT)ZP(u)ladu

Nevertheless, this method is a restrictive way of processing the data because of the isotropic
turbulence hypothesis.
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3. 2. Statistical problems arising with the 3D technique

Previously we have shown that (u, o, oz) can not be obtained simultaneously, so, do
not correspond to the same particle. In fact, (u, ;) and (u, o) are determined independently
so that Py 1 oo (U, a1, 0lz) is not known. In this context, the only issue to calculate the mean

and fluctuating values of the velocity vector is to derive relations between (u, o, o) and (V,
a, PB) first and second order momenta. However, information losses resulting from integration
process do not allowed an exact calculation. For example, an o variation can be detected as a
same direction variation of o; and o, where a § variation makes o.; and o varying in opposite
ways. The information on direction variations is lost during the integration process for the
determination of the standard deviations. As a result, the knowledge of 6.; and G, values is
not enough to determine G, and o because it has become impossible to know if a variation of
Gu1 and 6,2 corresponds to a G, Or a Gp variation.

More distinctly the following formula can be derived from relations (1) and (2) :

(ocl ,ocz) = [(a + arcsin(tan § tany)),(oc - arcsin(tan BtanY))] 4)

Assuming that tan y = y (with an error of 0.6 %) and tanf3 = B (with an error of 4 % for B
values lower than 20 degrees), formula (4) can be simplified :

(or,00,) = (o0 + By~ By) (5)

By averaging equation (5) :
(@, o) =[(@+By).(a-Bv)]
Considering o and B variable independence, we get :

C,, =0,, =,/0% +7%0%

It shows that only two independent quantities 6,; and o, are available to derive the three
standard deviations Gv, G, and op. This is due to the fact that o; and o are correlated
quantities.

Otherwise, because of the small value of v (7.5 degrees), 6,1 and 6,2 are more sensible to the o
fluctuations than to the B ones. For example, if o, and o are equal, the second term of the

square root represent 1.7 % of the first one, and if oy is three times larger than G, , the second
term is 15 % of the first one.

3. 3. Isotropic turbulence hypothesis

Deriving relations between (u, o, o) and (V, o, B) first and second order momenta

necessitate a hypothesis of non correlated variables because u, a; and o, are not measured
simultaneously.
Thus, it is interesting to consider an isotropic turbulence model. It is a useful model which is
not so far from real flow fields conditions except in boundary layer and other shear flows.
However, several authors use this hypothesis even in complex flows. For example Snyder and
Orloff [5] consider that the correlation coefficient do not exceed 20 % in shear flows, justifying
the use of such a hypothesis. Flack Miner and Beaudoin [7] also corroborate this hypothesis by
carrying out measurements in a centrifugal pump and pointing out that Reynolds stresses do
not exceed 0.5% even for low flow rates and high turbulence level at various locations.

16 - 4



A three-dimensional stationary isotropic turbulent flow field is described by the fluctuating
Cartesian components Uy, Uy, U, which are considered as independent random variables. The
statistical field is defined by the p. d. . :

1 Tog 2 1 N o, 1 "o 2
P, uyu:(uxuyuz) =P (ux)l;,‘,y(uy)Pu (uz) = w/?-—?tcu e s N 20, wonom o 2o
with 6, =0, =0, =0.

It can be shown that the p. d. £ in spherical co-ordinates become :
262 5 cosf 1 £Pcosd -
=3 X — ——— 2

(27)2 6?

P,y (£.6.0) = P ()P, (O)F,(g) == 2 ‘2z

The convection of this turbulent flow field by a uniform mean velocity givés the resultant flow
field (see figure 2) :
V=V+&=(V+&Ecoshcosg e, + & cosd sing?, + & sinE,

The spherical components of the velocity vector are obtained, assuming a small fluctuation
hypothesis and developing the previous formula at the first order :

[V /7,(0L - &),(B - E)] :Kl + %cos@cosd)],(ficisﬁ sind cos@j(%~ sineﬂ
By means of this relation, it is possible to show that V, o, B are non correlated random
variables following the Gaussian law.
v cosP
(2036

_)2 ‘(72 cos‘E(a—-&)}z —172([3_'6):

{r-v
e 2 ¢ 267 e 2

})V aﬁ(Vaaa B) =

Ny
<4
[

S

Q|

£

figure 2 : spherical co-ordinates
So that the marginal p. d. f. can be calculated :
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P, (V):\[Z—;o e

witho, =0

1 N 20,2 .
P = e F witho , =
B ('B) /_“27[0_’8 B

1 -

e
N27o,

< Q

(e}

V cos,E

P, (a)= witho | =

For a 2D flow field, using the same hypothesis, it can be shown that polar co-ordinates (u, o)
are also Gaussian random variables with 6, equal to o/# and o, equal to 6. Experimentally,
we verify that o, is actually equal to /% and that the velocity modulus and direction

distributions look like the Gaussian distributions of the same mean value and standard
deviation.

Those remarks corroborate the isotropic hypothesis and we will use it to calculate mean values
and standard deviations of the spherical components (V, a, B) in the following.

3. 4. Mean value calculations

First of all, it should be noted that (u, a1, o) are correlated variables whereas (V, a, B)
or (V, a, 0) are non correlated ones.

3. 4. 1. @ calculation
Equation (1) leads to :
a, +a,
2

o =

3.4 2. E estimation
The direct integration of equation (2) is not easy because of the non-linearity. Then a
second order Taylor development of equation (2) around the mean values of u, oy, oy is

performed, assuming that sind ~ § and tan y ~ ¥y, so that the § mean value can be expressed as
followed :

[sind | v’8

L

tany | (y2+ 52)2625

B =arct

The second term of the relation is very small even for very penalising configurations. For

example, if the f value is equal to 30 degrees and op to 11.5 degrees, its value is 0.74 degrees.
Thus a zero order Taylor development should be considered satisfactory.

3. 4. 3. Estimation of V
Using equation (3) and developing the same calculation as the B one, we get :

_ I tanz_S-_]él— v? i 1
P s ) o5

Here we could also limit the Taylor development to order zero, the second term of the relation
being about 0.01 for the previous conditions.
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3. 5. Fluctuation value estimations
As it has been shown previously in paragraph 3. 2, a direct calculation of V, a, B
second order momenta is impossible. However, the isotropic turbulence hypothesis induce the
following relations between G, G and Gv :
% ___Y
VcosfB cosf

o, =

Moreover equation (5) induces that :

—— — 2 2 2
O, =0, =40, +7%0;
o, =0, = \/oa2+7zcoszﬂcraz =g, y1+y2cos?f

So that :

Hence, we get :
o,

23

c, = =
V1+yZcos?f

o,, cosf

o, = =
,/1+yzcosz_ﬂ

o,V cosf
o, = —
L V1+y2cos?f

If we now look for the Cartesian components of the fluctuating flow field, we should make a
Reynolds development of all the instantaneous components which could be split up into a mean
and a fluctuating value. This leads to :

JU; +u, =(7 +v)cod B + B') cosl@ +a)
U,+u, =(V +v)cos B + B')sin(@ +a)
U, +u, :(7+V)sin([3—+ﬁ')

Hence, if we assume that the fluctuations are small compared to the mean values :
jcosﬁ'z cosa'~ 1

sing'~ a'

Lsinp'~ B
And, if we do not take into account the second order terms, we get :

Jux =¥ cos B sinaa'-V sin B cosaB'+v'cos B cos&
u, =V cos B cos@a'-V sin B sin@f'+v'cos B sina@
u, =V cosfp'+v'sin B

If we now take the square and the average of those three relations, assuming that v, o, B' are
independent variables so that correlation coefficients between those variables are zero, we get
the values of the three standard deviations in the Cartesian co-ordinates :
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[

jo;, :\/Vzcoszﬂ sinz&”aa2+I72$in2/)7c052070ﬁ2+a,,2(:os?-ﬂ cos?a

o, :\/7%052,6 cos@o, +V 2sin?f sin’@o, +0, cos?f sin*@

o, =V 2cos?fo, +a, sin2f

Moreover, should the results be given in a different Cartesian set ()? Y. Z, ), the new standard
deviations could be calculated as follows :

v f
JUXI =U,cosy -U, siny
o . U, =U, .
Y=Y v > 7, Lyzl =U_ siny +U, cosy

With the same procedure as before, the fluctuating flow field can be obtained :

uyl = Zly

Jux‘ =U, COSY —u, Sin Yy
[uzl =u, SIn Y +u, COSy

So, assuming that #_u, could be neglected, the standard deviations are :

(

P 2 2 2qin 2
Jo;l = /02, cos2y +0, 2sin 2y

G)’l :O:V

[o;l = \/o;zsin 2y +0,%cos?y

4. Check of the measurement technique in an axisymmetrical free jet

4. 1. Introduction

A preliminary test has been carried out in an axisymmetrical free jet to verify the
statistical method efficiency.
This experimental set-up has been chosen for several reasons. First of all, a characterization of
our wind tunnel has been made possible because of the various results existing in the literature
(Wygnanski and Fiedler [8], Corrsin [9]). Secondly, we could make the turbulence intensity
vary : from 2% in the potential core to 50% in the developed flow region. Thirdly, a lot of
measuring problems are present in this configuration : in the potential core boundary area
because of the eddy pattern, the high gradients and the seeding difficulties, and in the
developed flow region where the turbulence levels are very high. In this chapter, the
experimental set-up will be describe first, followed by an analysis of the results obtained with
different measuring devices.
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4. 2. Experimental facility

We use a 20 mm diameter wind tunnel which allows a vertical development of the free
jet. The velocity at the nozzle exit can vary and a static pressure probe gives the velocity value
within an uncertainty band of 0.5%. In order to protect the hot wire probe and because of
stability problems, the value of the exit velocity should stay between 40 and 65 m/s.

4, 3. Instrumentation

The 3D-L2F anemometer consists of an Argon-laser operating in multicolour mode,
coupled with an optical head manufactured by Polytec. The four different distances existing
between the start and the stop of our two 2D-devices permit the adjustment of the beam
separation with the degree of turbulence of the flow (Schodl [10]).

Electronic and acquisition systems are identical to the 2D-ones previously developed in the
LMF.A. at ECL [11]. All acquiring and processing procedures have been fitted to the 3D
technique.

The anemometer has been calibrated in order to precisely characterize the geometrical set up of
the probe volume (especially the exact value of angle 7).

Laser measurements have been compared to those obtained with conventional probes : the
mean values have been measured with a Pitot probe and the fluctuating ones with a crossed hot
wire probe. :

4. 4. Results

Measurements with the laser anemometer, the hot wire probe and the Pitot tube have
been carried out in three sections downstream the nozzle exit, orthogonal to the jet axis as
shown in figure 4. The first plane is located in the potential core, whereas the second and the
third ones are in the fully developed flow area. The free jet characteristics are presented in the
following table:

Plane 1| Plane 2 | Plane 3
2 10 20

distance from the

140 80 120
2 15 25
o140 50 25

* Jet axis mean velocities and turbulence level.

figure 4 : Measurement planes

Furthermore, for each measurement plane, four different angles yw between the plane
perpendicular to the jet axis and the optical axis of the 3D-device are tested in order to simulate
3D flow effects (0; 7.5; 15 and 30 degrees). The results are shown on figures 5 to 18.

4. 5. Analysis

On figures 5, 6 and 7 it can be seen that the mean longitudinal velocity profiles (U) are
well determined whatever the value of the angle v is. However, in planes 2 and 3, where the
turbulent intensity exceeds 20%, U is slightly overestimated.

Because of the difficulty in estimating the mean radial velocity (V) with a hot wire, Wygnanski
and Fiedler [8] had to derive its value from the continuity equation. The obtained pattern are
very similar to those observed from laser measurements on figures 8, 9 and 10.

The mean tangential velocity component (W) should be zero, but a mean value of 1.5 m/s with
a large discrepancy can be seen on figures 11 and 12. This corresponds to an error of 2 degrees
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on the B estimation which is correlated to small errors on the mean values of a; and o of less
than 0.2 degrees. We observe that the dispersion of the results tends to increase with the value
of y and with the turbulence level.

For plane 1 (see figures 13 and 14), we observe a good agreement between the hot wire and
the laser measurements for longitudinal and radial fluctuations, regardless of the value of the
angle y. The pictures show only some differences near the boundaries of the jet, which can be
explained by the different behaviour of the two measuring devices in this intermittence area of
shear flow. For plane 3 (see figures 15 and 16), the results are also satisfactory, and we can see
that the orientation of the optical axis does not influence the measurements in this developed
flow area. However, longitudinal laser values are underestimated and radial ones are
overestimated. Moreover, a larger dispersion than that observed in plane 1 can be seen : this
can be related to the high turbulence level exceeding 25 % in this region.

If we now look at the tangential fluctuations for plane 1 and 3 (see figures 17 and 18), and if
we compare the laser results to the radial fluctuations measured with the hot wire probe
(assuming as Wygnanski and Fiedler that the radial and the tangential fluctuations are equal),
then we see that the results are satisfactory whatever the value of y is. However, the
turbulence intensity level influences the laser measurements in plane 3.

5. Conclusion

It has been shown that measurements of strong 3D flow phenomena are allowed by the
3D anemometer with a rather good accuracy. The results are satisfactory even for high
turbulence levels (up to 50%). Consequently, the device is expected to allow measurements in
complex flows like those encountered in the wakes, at the leading edge, in the vicinity of the
corner vortex and in the tip clearance of real turbomachines. The next step of this study is to
perform measurements in a low-speed high-loaded compressor rotor.

BIBLIOGRAPHY

[1] r. scHoDL

Laser Two Focus Velocimetry

AGARD CP 399 Paper 7 1986.

[2] rR. scHODL & W. FORSTER

Design and Experimental Verification of the 3D Velocimeters Based on the L2F Technique
5" Int. Symp. on Appl. of Laser Anemometry to Fluid Mechanics in Lisbonne Potugal, 1990.
[3] MAAsS, FORSTER & THIELE

Unsteady Flow Experiments in the Exit of a Ducted Propfan Rotor

30™ AIAA/ASME/SAE/ASEE Joint Propulsion Conference in Indianapolis Indiana, 1994.
[4] c. J. CHESNAKAS & P. L. SIMPSON

Full 3D Measurements of the Cross Flow Separation Region of 6:1 Prolate Spheroid
Experiment in Fluids, vol. 17 pp 68-74, 1994.

[5] P. k. SNYDER & K. L. ORLOFF

Reduction of the Flow Measurement Uncertainties in Laser Velocimeter with Non-Orthogonal Channels
AJAA Journal Vol. 22 Nb 8, August 1994.

[6] rR.c. sTAUTER

Measurement of the Three Dimensional Tip Region Flow Field in an Axial Compressor
ASME-JT, vol. 115, pp 468-477, July 1993.

[7] R.D. FLACK, S. M. MINER & R. J. BEAUDOIN

Turbulent Measurements in Centrifugal Pump with a Synchroneously Orbiting Impeller
ASME-JT Vol. 114, pp 350-359, April 1992.

[8] LwyGNANSKI & H. FIEDLER

Some Measurements in the Self-Preservine Jet

16 - 10



J.F. M. vol 38 (p 577 - 612) 1969.

[9] s. corRrsIN

Investigation of the Flow in Axially Svmmetrical Heated Jet of Air

NACA Report ARC 3223 Dec. 1943.

[10] r. scHODL & W. FORSTER

A New Multi-Colour Laser Two Focus Velocimeter for Three-dimensional Flow Analysis
ICIASF Record (p 142 - 151) 1989.

[11] L.TREBINJAC & AVOUILLARMET
A Laser Anemometry Techrnique for Measurements in a Single Stage Supersonic Compressor

Proceedings of the 9th Symposium on "Measuring Techniques for Transonic and Supersonic Flows in
Cascades and Turbomachines", pp.10.1-10.27, Oxford, Mars 1988.

= —_
5 g
5
ioure 6
5.00 ey o ey
v
I SOTRSOOON SRO RO - S
CF
: + B
® = § E § :
B E 000 g g
S = il z
o i 3 i 5
o Q Plane 1
ITET ““ """"""""""""""" + oo
o PERX.
H O s
% O e
-5.00 I ; , i
-20.00 0.00 20.00
1 (mm)
igure 8

16 - 11



V (m/s)

W (m/s)

urms/Um

5.00 meeeeeeeeenes greeeemenneeens omeremneeees prereaeaeneas )

0.00 -

@ ‘ ; Plane 2

ocoo+

5.00 oo I e

0.00 o-eeemeeeees 4Bl

%0
@ +o
O¢
R R < SRR S
o 4o
P
HooO O

-20.00 0.00 20.00

0.15 —reoseeseeoes et oo

0.00 , i i i
-20.00 0.00 20.00

2.50 —peeeeneeees yreseemeeeaeens rmsenensennans e :

0.00 -rreeeeeees RS- R

V(m/s)

opo+

e oo prosiaeeeeeees :

0.00 —---eemeergpordoragen oo +r ------- o
+ * + © © | Plane2
O :
: + o
u} o +H oo s
: o s
| o _w
I ! I

-40.00 0.00 40.00

R e e s ;

vrms/Um

0.00 , i , 3
-20.00 0.00 20.00

16 - 12



urms/Um

wrms/Um

0.20 -

0.15 -

wrms/Um

% 010 -
=
I g Plane 3 B
: Hot Wires
5 + o
0.05 oo P
1
TR O 3
0.00 = , i
-100.00 0.00 100.00
T (mm)

i ;
o |
d O ;
: : : : Qo %
0.00 | T T i 0.00 T b ] i
-20.00 0.00 20.00 -100.00 0.00 100.00
1 (mm) T (mm)

16 - 13



