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Abstract

A lour-hole pyramid probe has been calibrated for use in an annular, transonic turbine cascade tunnel. Tt
will be used to measure tolal pressure, Mach number and two flow angles. The probe was calibrated in an
ejector-driven, perforated-wall transonic tunnel over the Mach number range 0.5 Lo 1.2, with pitch angles from
—90° Lo 4-20° and yaw angles [rom —23.6° to +23.6°. A computer-driven automatic traversing mechanism
and data collection system were used o acquire a large probe celibration matriz of flow variables and non-
dithensional calibration coeflicients. A novel method was used to transform this matrix into a probe epplication
malriz of flow variables at ixed values of the calibration coeflicients. This then acts as a look-up table which
means that interpolation is only required within one cuboid-shaped cell. Such a method is considerably more
efficient than a simple global scarching routine.

1 Nomenclature

1.1  Symbols

C.n  Axial chord

¢, Pitch coellicient

Cp  Yaw coeflicient

Ch Mach number coeflicient

¢,  Total pressure coeflicient

D Pressure Difference (P4 — Pou)
M Mach munber

P Pressure

Re  Reynolds Number

Q Pitch angle

fi} Yaw angle

5 Ratio of specific heats



1.2 Subscripts

0 Stagnation conditions
A B,C, D Holes of the probe {see figure 1)
av Average value

2 Introduction

Multi-hole pressure probes have long been used in turbomachinery applications. Measurements of flow angles
and Mach nuber with such probes are necessary for determining losses in linear and annular cascades and are
currently being widely used to provide data for the validation of computational predictions.

Traditionally, five-hole probes, with four equi-spaced side holes around a central hole, have been used for aerody-
namic measurements in three-dimensional flowfields (Dominy and Hodson 1992). The use of five pressure holes for
three-dimensional probes accumulates redundant information as the probe need only have the minimum number
of loles to measure the relevant flowfield variables (say, total pressure, Mach number and two flow angles), which
is four. Hence four-hole probes have become more common in recent years (Shepherd 1981, Sitaram and Treaster
1985, Hooper and Musgrove 1991, Cherrett, Bryce and Hodson 1992), having the advantage of smaller size, fewer
measurements in calibration and application, and less instrumentation.

In conttinuous wind tunnels multi-hole probes are usually used in nulled mode, with the probe angled to face
directly into the incoming flow. This has the advantage of not requiring accurate pitch and yaw calibration.
However, in short-duration tunnels and in turbomachines with spatial restrictions, the nulling process is imprac-
tical and a three-dimensional calibration is therefore necessary. The probe described in this paper was developed
specifically for use in such a short-duration tunnel, namely the Oxford University transonic annular blowdown

cascade tunnel.

There is very little in the literature about how to transform the calibration data into a usable form for converting
experimental data into flowfield measurements, especially in the case when Mach number variations are also
being taken into account. Methods using polynomial surfaces as approximations (Koschel and Pretzsch 1983,
Kupferschmied and Gossweiler 1992) require a lot of computing power for a small degree in the polynomials and
can produce large errors. This paper proposes a novel method for tackling this problem, which copes remarkably
well with the large degree of non-linearity of the calibration coeflicients in the transonic regime.

3 Probe Geometry

Tle probe is shown in figure 1. The probe is a four-hole, truncated pyramid probe, similar to that used in
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Figure 1 The Probe. Lell: Side view; Centre: Hole labelling convention and dimensions of the probe tip; Right: Angle of

the probe face

incompressible flow by Shiepherd (1981), but with side faces inclined at 60° to the normal to the probe sting to



improve transonic performance. The 67 mm long, slender sting is aligned with the mean flow. The stem used
was designed for better aerodynamic performance than the commonly used cylindrical shape and to prevent its
bow shock from interacting with the probe tip.

An important consideration in the design was the desire to create a compact probe which produced minimum
blockage and no redundant data; the other main consideration was to make the probe as insensitive to Reynolds
number as possible, since the correct probe Reynolds number could not be produced in the calibration tunnel.
The use of the sharp-edged, faceted probe tip with well-defined separation lines ensures that the probe is less
Reynolds number sensitive than the more frequently used conical and spherical probes. These factors are similar
to those that guided Cherrett et al. (1992) to decide upon a similar probe following experiments by Dominy and
Hodson (1992) on five-hole probes.

The probe was constructed from four stainless steel iypodermic tubes of 1.0 mm outer diameter and three solid
stainless steel rods of the same outer diameter. These were placed into a 4.7 mm outer diameter, 3.1 mm inner
diameter stainless steel tube, with one hypodermic tube in the centre and the remaining hypodermic tubes
alternating with the solid rods. This confined the hypodermic tubes to being in the correct positions relative to
each other. The gaps were then filled with hard solder and the triangular length of sting and the four faceted
faces were machined from this. The outer tube was then welded onto the stem and the four hypodermic tubes
were led inside the stem and fixed there using hard solder.

4 Calibration Facility

The tunnel used for the calibration was the 229 x 76mm ejector-driven transonic tunnel in the Oxford University
Engineering Laboratory. The nozzle used the perforated-wall transonic liners developed by Baines (1983) for
calibrating probes for two-dimensional flowfield measurements. Figure 2 is a schematic drawing of the calibration
tunmel test section. The stagnation pressure was measured in the upstream plenum and the static pressure was
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Figure 2: The Culibration Tunnel. Left: Side view; Right: Top view.

measured from tappings in one of the nozzle liners and on the side wall at mid-height at the same axial position
as the probe tip. Schlieren flow visualisation was used to check that the tip remained upstream of any shock
waves created by the sting or stem of the probe.

A new mechanism was built to automatically traverse the probe through the required range of yaw angles. Since
the mechanism was mounted on a circular window, the pitch angle could be set manually between runs. The



pivoting mechanism ensured that the probe tip was positioned in the centre of the nozzle exit plane irrespective
of piteh and yaw augle. The traversing mechanism was mounted on the window so as to still allow use of the
schlieren system in the tunnel. The traversing mechanism was driven by a stepping motor controlled by a 486
PC. This computer also acquired the data for the yun using a Computer Boards CIO-DIO24 analogue-to-digital

board.

The calibration sequence was to fix the pitch angle, then traverse through yaw angles between —23.67 and +23.6°,
in steps of 1.87, at each of 17 Mach numbers, ranging from 0.5 to 1.2. The pitch allgi(‘ was then varied hetween
—207 and +207 in steps of 22 until all the calibration data had been acquired.

For a given tunmuel gjector setting, the flow Mach nuniber varies with probe blockage as the probe pitches and
yaws. This does not. present a problem as long as the Mach number is recorded at each calibration data point and
a sufficient regularly spaced set of Mach numbers is obtained for cach combination of pitch and yaw angles. In
total, data was acquired at almost 10,000 points of pitch angle o, yaw angle # and Mach number A{. See figure 3

for the definition of these fow angles.
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Figure 3: Definition of flow angles relalive to the probe.

5 Calibration Coeflicients

In general, the four probe pressures P4, Pp, P, and Pp are functions of (o, 3. M, Re, %), The truncated
pyramid probe is insensitive to Reynolds number (Dominy and Hodson 1992), and so the calibration depends
ouly on (o, 3, M, I%). Dimensionless parameters are then defined to characterise the probe performance. These
parameters are rafios of pressure, and hence not dependent on Fy. Shepherd (1981) defined a system which
divided the area around the probe into six zones for defining his calibration coefficients. due to the desire to
prevent the denominator from going 1o zero and then going negative, causing a pole. Hooper and Musgrove
(1991) simplified these coeficients slightly, so that only three zones were required. Both of these systems were
devised to allow {for measurements of angles in excess of 40 degrees.

Tt is unnecessary to use this complicated system for calculating the calibration coefhicients by either zoning
methods for the mueh smaller range of yaw and pitch angles being considered here. For incompressible flow
Sitaram and Treaster (1985) used the following dimensionless parameters (where the hole labelling convention is
defined in figure 1):
) . Pp — i Po+ Pp
Pitch Coefficient Oy = 2 (D },

Pe — Pp

D 1

and Yaw Coeflicient Cy =
whore
Py +Pe+Pp
3
In the compressible case considered lere a third dimensionless parameter is needed. While P, /FPs or D/ Pa
could be used, it seems logical to use a pscudo mach number based on the measured pressures:

P = and D =Py~ F,.,.

1
q=l 2

2 P\
Mach number coeflicieat Cpy = ( = ) —1
v—1 Pa




Figure 4 shows that Cys varies nearly linearly with Mach number up to a Mach number of approximately 0.9. In
transonic flow the slope varies, and so it is necessary to calibrate over finer steps of Mach number in this region.
A fourth dimensionless parameter, the total pressure coefficient Cy = (Fy — Pa}/D, is also used later to recover
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Figure 4: Vartation of Mach number with Mach number coefficient.

the total pressure Py. Generally for small @ and 3, C; ~ 0.

6 Probe Calibration Matrix

The calibration data from all runs of the tunnel was put into one large matrix, the probe calibration matriz,
in columns of (e, B, M, Cq, Cg, Cpr, Co). This was done in an ordered manner, so that each point could be
referenced through a simple indexing algorithm. Figure 5 shows a carpet plot of the C, and Cpg calibration over
a range of pitch and yaw angles for a tunnel setting giving M = 0.97, along with the three dimensional a, 8, M
surfaces plotted on the Cy, Cg, Car axes.
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Figure 5: Planes from the probe calibration mairiz.

7 Transformation to probe application matrix

When the probe is used to measure a flowfield, the probe measurements yield (Co, Cg, Car) values. The question
then arises as to which is the most efficient computational technique to use the probe calibration data to convert



the readings into the flow variables (e, 8, M, Fy). A full three-dimensional search for the nearest (Cy, Cg, Car)
points in the probe colibrotion matriz, followed by interpolation is hopelessly inefficient, as, for an N x N x N
(N ~ 20} set of calibrations, ~ N3 (~ 10%) points have to be searched for each data point.

A more efficient approach is to derive a probe application matriz containing values of (o, 8, M, C;) at fixed,
regular, known steps of (Cy, Cg, Cu). The eight nearest points enclosing an experimental value of (Cl, Cp,
Cps) can then be rapidly determined by a simple indexed look up. A simple interpolation then determines the
measured flow variables.

Two methods were attempted for transforming the probe calibration matrix into a look-up table at constant
values of the three coefficients (Ce, Cp, Cpr). Both methods involved defining a grid in probe (Cu, Cg, Ca)
space at discrete values of each coefficient and calculating the values of each of the other variables (the three
flow variables and the total pressure coefficient) at each point by interpolation. Any points on the new grid lying
outside the calibration data range were assigned the value NaN (Not-a-Number).

The first method involved a global search over the whole of the probe space (Cy, Cs, Car). This was done by
dividing the space into the eight octants about the point being searched for. The nearest point in each octant
was found using a least-squares searching routine, biased to weight the differing calibration coefficients equally,
and the interpolated values of the five variables were found by linear interpolation from these eight points. There
were two main problems found with this method. The first was that it was numerically very inefficient, as it
searched over every point in the space instead of just the few around the point being considered. This requires
~ N% (~ 10®) calculations for the complete transformation. The second problem was that this method sometimes
failed to find the actual cell containing the point, if, as regularly happened, the cell failed to lie with each vertex
in a different octant relative to the point in consideration. This resulted in increased errors.

Thus a new method was sought to perform the transformation. This employed variable-by-variable (or sequential)
interpolation. The principle of this is to do the transformation in three stages, interpolating only one variable at
a time. Numerically, this method is considerably more efficient as the searching is done along a line instead of
over the whole three-dimensional space. The sequence is summarised as follows:

1. For each fixed @ and § combination, interpolate between M and Cjis to get the desired Cas grid — this
moves the matrix from a uniform grid in (o, 8, M) to a uniform grid in (o, 8, Cum).

2. For each fixed « and Cpy combination, interpolate between A and Cp to get the desired Cg grid - this moves
the matrix from a uniform grid in (e, B, Car) to a uniform grid in (o, Cp, Cp).

3. For each fixed Cg and Cjs combination, interpolate between o and C, to get the desired C, grid — this
moves the matrix from a uniform grid in (@, Cp, Cu) to 2 uniform grid in (Ca, Cp, Cps), which is the
required look-up table.

Thus both methods produce a large output matrix («, 8, M, Cq, Cg, Cpr, Cy), the probe application matriz, with
the variables C, Ca, C lying on the required grid.

The first method can cope with random measurements in (e, 8, M). The second method does not require a
constant Mach number grid, but does require constant « and 3 grids. Both of these methods are applicable to
the calibration performed, despite the Mach number not being completely repeatable.

The second method requires only ~ 3N? (~ 10) calculations, and is quicker by a factor of N3/3 {~ 10%). Using
MATLAB software on a UNIX workstation, the second method proved in practice both to be considerably more
efficient (a factor of 250 times faster) and to give much smaller average errors when the calibration data was fed
back into the probe application matriz, provided that a sufficiently fine grid was used to ensure accuracy of the
linear interpolations through the transonic region (figure 4 shows the non-linearity of Cpy through the transonic
region). Consequently, this second method was used to perform the transformation to the probe application
matrix. To provide sufficient accuracy on each line interpolation, a grid of almost 87,500 points was selected for
the probe application matrix. Despite the size of this matrix, 3,000 points of experimental probe data could be
converted into flow variables in just a few seconds. Examples of the planes in the probe epplication matriz are
given in figure 6.
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Figure 6: Planes from the probe application matriz.
8 Conclusion

A four-hole pyramnid probe has been calibrated over a wide range of Mach numbers and flow angles. A new,
highly efficient method has been generated for transforming the calibration data into a quick look-up table
allowing 3,000 data points to be analysed in a matter of only a few seconds. The computational advantages of
this method compared with a simple global search have been evaluated.
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