Session 5: Optical Measurement Technigues Paper 22

A Study of Some Measurement Errors
in L2F-Velocimetry

F. Kost
DLR Gottingen, Germany



Summary

In high speed flows the mcasurement accuracy ol Laser-Two-Focus velocimetry is
mainly determined by the statistical error due to insufficient number of sampled
particles. Nevertheless there exist a lot of other sources of measurement error which
may reduce Lhe accuracy of the results: The geometry of the mcasurement volume
leads to systematic crrors in the turbulence degree. Windows which permit optical
access {o the internal flow may disturb the Mow or distort the Laser mcasurement
volume. The cvaluation procedure may add some uncertaintly. In the present study
some of these measurement crrors have been investigated numerically. In some cases
systematic crrors can be circumvented or may be corrected quantitatively. It can also
be shown that mcasurement time may be reduced by choosing adequale parameters
for the 1.2F-device and the measurement procedure, without affecting measurement
accuracy.



Nomenclature

d cffective diameter of L2F-Tocus
S distance of the two L2F-focus
u, v velocity components in cartesian coordinate system
c velocity in polar coordinate sysiem
Tu turbulence degree
o angle (in radians)
3 smali quantity
n probability distribution function
g square root of variance, width of probability distribution
N number of counts in a frequency distribution  or
number of particles traversing the start focus at a fixed angle
n, n{o) number ol particles traversing the start and stop focus at a fixed angle
Subscripts .
[ index of measured event or i-th angle
b background (noisc level) of a distribution
u in direction of mean velocity vector
v perpendicular to mean velocity vector
o flow angle distribution
Superscripts

-- time mean value
deviation from mecan value

t

Introduction

To investigate the flow ficld inside turbomachine components the Laser-Two-Focus
velocimeter (L2F) is an appropriate tool. A detailed description of a L2F-velocimeter
was given by Schodl [1]. The L2F-measuring device generates two highly focussed
light beams in the probe volume which act as a ‘light gate’ for tiny parllc]cq in the
flow. The scattered light from the particles provides two successive pu]qes and rom
the time interval between the pulses the velocity perpendicular to, but in the planc
of the faser beams can be derived. The mean flow angle is provided by turning the
second beam around the first and so accumulating time-of-flight histograms at a
number of angles. '

The L2F device has several advaniages making it especially usefu! for measurcments
in turbomachinery components, but the measurement procedure is rather (ime con-
suming. In the past years a number of L2F-mcasurements have been conducted in the
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windtunnel for rotating annular cascades at DLR Géilingen [2]. Onc conclusion
from those measurements was that it is very important Lo have an error bar available
for cach measured quantity at any point. There is furthermore a strong demand to
reduce measurcment time (to improve measurement efficicncy).

In the following sections some measurement crrors (not all) of the L2F mecasurcment
procedure and evaluation will be described. Furthermore some suggestions arc macde
concerning measurement efficiency.

Numerical simulation of a Laser-Two-Focus measurement

Some years ago, when ‘L2F” was still a rather new instrument, there was not much
information available, concerning the intrinsic measurement ceror of the L2F-device.
This led to the intention to create a numerical program which cnabled us to simulate
the L2F-measurement. It is not a surprise that other persons had the same idea [3,
4]. Our program proved to be especially usclul when testing the L.2F cvaluation pro-
gram and also at the beginning of the development of the 3D-L2F prototype [5].
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Figure 1. Measurement volume for the numerical simulation

The L2F measurement velume for the numerical simulation consists of two cylinders
as shown in Figure 1 . Start focus is a cylinder of a certain length paralicl to the
z-axis and located at the origin. The stop focus is also paralicl to the z-axis but it is
located at a distance s from the start focus and at an angle «. In order to simulate a
real L2F measurement the program proceeds in the following way:
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¢ 3D velocily vectors are generaled with the aid of a random number generator.
The velocity components are normally distributed, they posess a mean value, a
variance and a corrclation, according to a given fully 3D Reynolds’ stress tensor.

®  The start-focus is divided into many patches.

® A particle posessing a 3D velocity starts in a patch of the start focus, the pro-
gramm looks, wether the stop focus is hit, it computes the flight time and stores
the event.

®  After a certain number of started particles the patch in the start cylinder is
changed, after using all patches the angle of the stop focus relative to the start
focus is changed and the previous steps are repeated. In z-direction the particles
may also have different mean velocity valucs.

When using such a simulation it is assumed that the single velocity vectors arc ran-
dom values but the velocity components are distributed according to a 3D Gaussian
or normal distribution. The “succesful mecasurement cvents’ of the simulation are
stored in the same way as the L2F device docs it, i.c. as time-of-flight distributions.
To these distributions background noisec may be added finally. To test a 1.2F-cval-
uation program the resulting distributions were passed to the evaluation program.
To look for statistical crrors only a limited number of particles were started in the
start focus. I there was interest in systematic errors of the measurement procedure,
the so-called infrinsic errors, then numerous particles were started to make the sta-
tistical errors small.

The abave described program does not allow to simulate the stochastic arrival of the
particles in a rcal measurement which Icads 1o the so-called ‘statistical bias’, but
nearly all other characteristic features of a L2F measurement can be correctly simu-
tated.

Taking a cylinder as start and stop focus is the most questionable assumplion in the
simulation and throughout this whole paper. For example, in the appendix it is shown
thal a plane glass window may lead 1o a shape of the focus which is very far from a
cylinder or anything clse having axisymmetry, if the axis of the light beam and the
vertical on the window deviate much. A certain freedom is introduced in the simu-
lation program as the diameter and the length of the cylinder may be chosen as
independent parameters and it is possible to use subsequently cylinders of different
diameters and lengths during one simulation, adding all succesful events from the
different cylinders.

Another basic assumption is that a particle passing a cylinder is always detected by
the optics when traversing the inside of the cylinder, but it is not detected when
remaining outside. That means the detection function is a step function and not a
Gaussian distribution or something elsc. This special feature is justificd by following
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arguments: In high spced gas flows incoming particles arc not so abundant that they
compete for detection. They are detected when they scatter a sufficient amount of
light into the direction of the detector. The amount of scatiered light is a function of
particle size and light amplitude in the focus. I there is not too much variation in
particle size then it is certainly possible to define an effective focus diameter {and
length) which depends on the special detection optics and clectronics but is neverthe-
less constant during a fixed sciting of the device.

This paper confinces itself to flows with turbulence degrees less than 16%. For such
lows the cxact length of the L2F focus is of minor importance compared to the
cffective diameter, as the focus diameter is much smaller than the focus length. That
is why in the following simulations the length was always kept constant and only the
diameter and the distance of start and stop cylinder varicd which means that in this
investigation 3D effects did not play a role.

Statistical error
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Figure 2. Frequency distribution with background noise added

In Figure 2 a typical frequency distribution is shown, approximating a normal dis-
tribution of amplitude A and variance ¢’ At the basc of the normal distribution a
background noisc level has been added. The amplitude of the background noise has
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the variance of. This distribution resembles a measured distribution of frequency
versus velocity or frequency versus angle (a distribution which results from integrat-
ing the frequencies in the time-of-flight distributions at fixed angle).

[t is a common problem to compute the mean and the variance of the quantity X from
such a noisy distribution. By the numerical simulation program a number of such
distributions with different total numbers of events, N, in the distribution and dif-
ferent background levels were produced. From cach distribution the mean was com-
puted and compared with (he exact mean. From the whole sample one could then
derive a formula relating the error to the decisive parameters. The constant in the
formula was computed by a ‘Least Square Fit". A similar problem was investigated
analylically by Bobroff [6]

fy = crror of the mean X (95% confidence interval) .

X

I. evaluation of distribution in the region X 4+ 3 ¢
(N = 99.7% of Nyu) : ¢ 10

2. cvaluation of distribution in the region X+ 2 ¢
(N = 955% of Npyw) : cx 4

The form of the above cquation was of course chosen in such a way that without
background noise, oy = 0, just the commonly known statistical crror Zalﬁ
results. The sample from which the constant ¢ in the above cquation was computed,
was not large. That is why the constant ¢ could be only approximately determined.
Nevertheless it can be scen that the background noise influcnces the error 13 differ-
ently: When the “whole’ distribution is evaluated (case 1) the influence is much bigger
than in case 2, where the ouler part of the distribution was ignored when computing

°

the mean.

The practical importance for L2F mcasurements is two-fold: First we have an
cquation from where we get an error bar for the measured quantity. Secondly, the
above result tells us that it is not desirable to cover the whole distribution during a
measurcment. Especially the angle range of the L2F measurement need not cover the
whole flow angle distribution, so saving measurement time withou( increasing Lhe
Crror.



-6 -

Evaluation ervor when using only integrated distributions

Schodl {1] suggested a L2F mecasurement procedure which ought to reduce meas-
urement time by storing only the integrated time-of-flight and angle distributions. In
Figure 3 two equal two-dimensional frequency distributions and the related one-di-
mensional integrated distributions are shown. The usual definition of the mean flow
values U, Vv, Tu, Tu, (scc below), would require o integrate the 2D distribution in
carltesian coordinates. By storing only the integrated time-of-flight and angle distrib-
utions an implicit integration in polar coordinates is performed. This leads (o a sys-
tematic crror which has to be minimized.

integrated distributions
& = mean value

2
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Figure 3. Trequency distribution in a cartesian and a polar coordinate system

The coordinate system is oriented in such a way to give @ = 0

velocity-components in carlesian coordinate system: u, v
velocity, angle in polar coordinate system: ¢, o
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In the above equations always the first term on the right side can be derived from the
integrated distributions in the polar system. The remaining terms denote the system-
atic error introduced by integrating the 2D distributions in polar coordinates instcad
ol in a cartesian coordinate sytem.

As an cxample the mean velocity v is given the value zero, but in reality it should

have u'v’ /1. Or, the Reynolds’ stress delermines the error of ¥ to first order, The
above derivation did not use a specific L2F feature. That means any measurcment
device which delivers a mean value in a polar coordinate system, for example by
determining a mean angle, gives the same error.

in the following figures the errors of the resulting turbulence degrees arc plotied.
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Figure 4. Error of turbulence degree (error surfaces), correlation r=0

In Figure 4 crror surfaces are shown for the case of no correlation between the vari-
ance of the u- and v-component.
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Figure 5.  Error of turbulence degree (diagonal of error surface)

in Figure 5 the diagonal of the error surfaces are shown, but the case of a correlation
between u- and v-component is included.

The errors resulting from these integrated distributions are normally smaller than the
statistical error. Nevertheless it is desirable to avoid the usc of the integrated distrib-
utions in the future because the integration procedure by summing up the events in
a time-of-flight and angle distribulion strictly requires that scattered fight from sur-
faces is independent of the angle setting. This requirement cannot always be fulfijled
especially when measurements near to surfaces arc performed.

Error in measured turbulence degree coming from the finite diameter of the
Jocus

Because of finite diameter of the L2F focus, measurement events occur.even then,
when the angle of the stop focus is such thatl no particles from the start focus should
hit the stop focus. The finite diamecter of the two focus leads to angle distributions
which are too wide and so a too high turbulence degree Tu, resulls. The following
analysis uses the assumptions concerning the focus stated above, that are: cylindrical
focus and cxistence of an effective focus diameter. A strongly distorted focus, as
described in the appendix, would lead to different results.

According to Figure 6 a triangle-shaped angle distribution would be mcasured when
the turbuience degree Tu, is approximately zero.
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Figure 6. Angle distribution at Tu, = 0
Special case Tu, = 0

(N = number of particles started at fixed angle,
n{e) = number of particles traversing first start then stop focus, at fixed angle) :

B I3 _ _d
n(oc)-N(]— o P =

From such an angle distribution the variance of the angle can be determined:

e
J.cxzn(rx)da .
— 2
2 e 2 2 o | rd
O g 0 g )= ()
I n(e) do 0
-2,

That means our device would measure the above computed variance of the flow
angle, whereas the real flow would have the variance zero. As a result of the numer-
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ical simulation it can be shown that the measured turbulence degree may be corrected
at any turbulence degree by changing equation (4) on page &:

?  2) 2., I i'z .
rr\,—c[sma_?(s)} (5)

Height of angle distribution as a function of turbulence degree

Instead of determining the turbulence degree Tu, from the angle distribution (or the
2D (u,v)-distribution), which makes a correction necessary according to the previous
chapter, il is also possible to gain a functional rclationship between Tu, and the
height of the angle distribution. This has already been described by Decuypere ct al
[4], but here the functional relationship will be explicitly given. The flow angle dis-
tribution is the measured distribution of frequency versus angle (a distribution which
resufts from integrating the frequencies in the time-of-flight distributions at fixed
angle). The measured L2F angle distributions arc always rather near to a Gaussian
shape. The distribution shown in Figure 2 on page 4 resembles a typical measurcd
angle distribution.
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Figure 7. Height of angle distribution versus turbulence degree
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N = number of particles traversing the start focus at fixed angle
ne = hcight of angle distribution = number of particles traversing start and stop
focus at angle o.

In this paper the height or amplitude of a distribution always denotes an amplitude
where an eventual background level has already been subtracted. That means in all
chapters apart from the chapter ‘Statistical error’ we look at distributions which
approximate the basc line zero, far from the centre. In Figure 7 the amplitude n, is
shown as a function of Tu, and the ratio of effective focus diameter Lo focus distance
is a paramecter. This is a result of the numerical simulation.

If the height of the angle distribution is plotted over the ratio of d/s and Tu, then all
curves of Figurc 7 collapse to one. This is shown in Figure 8 , where the resulls of
the numerical simulation in the case of ‘high turbulence’ are plotied.
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Figure 8. Height of angle distribution versus 1/ Tu,
[t is not difficult to get an analytic solution for the curve of Figure R in the case of

‘high turbulence degree’, which means here Tu, » d /s, First, it is assumcd that the
flow angle probability distribution has Gaussian shape:

2
| — | o — 0
p(o) da = ——er cxp[ — ( ) } ;o o, = Tu, (0)
o, J2n 2 T

({o) is approximated in the vicinity of &:
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(o + o) ~ qo(fx')[l —-%(%)2]

The finite diameter of the start focus is divided into three patches and the started
particles are caught by the stop focus, if they remain in an angle range of d/s.

. d ~, 5d
@ s e
Do e 1 J _ J
TN Y3 (o) do 4- 2 o) da
7.4 g4
%7 s % s
—f-qj—<'F11V:

ny d o a Y ©)
N ™ . Ty, 21 216 \ s Tu,

In Figure 8 the analytical equation (9) is included, too. It can be scen that equation
(9) is not only valid for d /s < Tu,, but up to d/s = Tu,. In Figure 8§ there is fur-
thermore included a curve showing the result of a Least Square Fit (valid for
< 2.5):

s-Tu,

=x-(1+ax’-+bx’) , where
| 10
d - a=—0.5741; b=025256 (9
s-Tuv-\/Zn

Ng
N

X =

In Figure 9 the results of the numerical simulation in the case of “low turbulence
degree” are shown.

In the case of zero turbulence all particles passing the start focus also hit the stop
focus (sec Figure 6). When the turbulence degree in the flow takes a value above
zero, more and more particles miss the stop focus at « = &. Thercfore the height of the
angle distribution decreascs rapidly. To look for an approximate analytic solution in
the casc of low turbulence, Tu,<€ d /s, the situation is depicted in Figure 10 .

We confline ourself to parlicles starting in the upper half of the start cylfinder, because
of symmetry. At any y-valuc of the first focus particles start, possessing a rather
narrow flow angle distribution. If the actual angle of a particle deviates from % less
than (d/2 - y) /s, it will hit the stop locus.
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o = o0, o, =Tu,; Tuvg%,
o
2 2
Ny~ — n(y) dy, where
d %
n{y) = N, if —g——y>3rr”s, or (11}
4.
2
n(y) = N [ \ ooy do’ | if y > %_3%3
Y- 37

For simplicity, it is assumed that the flow angle probability distribution ¢ has tri-

angular shape, but the same amplitude as the Gaussian distribution of equation (6):

o) dor = —A [ - 1] and

O’a-\/Z? au-\/g ’ (12)

Py de’ = 0, if Ja'| > na-ﬁ;-

The final result is:

d . n(] \IE S - TUV
“‘;{*;’TUV. _N— x| - 3 d (13)

In Figure 9 the analytical equation (12) is included. In Figure 9 there is furthermore

. . . ) s-Tu,
included a curve showing the result of a Least Square Fit (valid for g < 1.4) .

Tt -osn St oo (ST ) (1o
N ' d d

As the valid regions, belonging to the cquations (10) and (14) overlap, it is possible
to compute the height of the angle distribution for any turbulence degree. The above
analysis always implicitly supposed to have a symmetric or even Gaussian angle dis-
tribution. This is true for isotropic turbulence. Nevertheless, from some examples of
the numerical simulation it followed that the above resulls scem to be applicable even
for non-isotropic turbuience, if really the amplitude of the angle distribution is taken,
not the value at @ = . In the next chapter it will be demonstrated that the unknown
parameler /s can also be determined from the measured angle distribution, so no
cxlra calibration is nccessary.
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Sum of events in the angle distribution

N = number of particles traversing the start focus at a fixed angle

n; = number of particles traversing start and stop focus at the ith angle
m = number of angles during a L2F-measurement, m > 2

o = ith L2F angle (in radians)

Ao = o —

&

o

Supposition :
During a L2F-measurement the angle distribution is fully scanned,

loy — o] > Max(6a,, 2—%— ). This condition means: The width of the meas-
urcd angle distribution is either governed by the width of the flow angle distribution
(6 0,) or by the L2F device angle 2d/s , but the L2F angle range should be larger, if
onc wants to apply the following formula. Furthermore, also the choice of the L2F
angles o; should be such that the flow angle distribution is fully scanncd. This implics
that of course the mean angle & has to be included and the number of L2F angles,
m, should be large enough.

Zni _ 4 (m—1)-N = % (15)

¥ lmm - 'xll

N
Ao

The above cquation enables us to compute the unknown parameter d/s from an L2F
mecasurement. Of course the basic assumptions of the numerical simulation, stated
carlier, must be valid. Up to now these assumptions have not been checked cxper-
imentally, but it should be done in the future.

As the minimum angle range o, — o] is dependent on turbulence degree (if
3o, > dfs; remember g, & Tu,), it follows from the above formula that for higher
turbulence, in order to get the same number of succesful cvents in the measured angle
distribution, you have to increase cither d/s or the number of angles, m, or the num-
ber of particles started per angle, N. The only way (o achicve this without increasing
measurement time is to increase d/s (sce Schodl and Forster [57). As in the up to now
installed L2F devices there is normally no possibility to change the distance of the
focus, it is advisable to have a ratio of d/s as large as possible from other reasons.
One should not fear a large d/s at moderate to small turbulence degrees, as according
to Figure 7, even at the the ratio d/s = 0.08 the dependence of the amplitude n, on
turbulence degree is rather strong, which mcans that there is a possibility to detect
small turbulence degrees.
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Conclusion

In the paper some important measurement errors intrinsic to L2F measurcmenis have
been numerically and analytically investigated. These are:

®  Statistical error of distributions with background noise at the bascline.

®  Bvaluation errors caused by using integrated distributions which have been pro-
duced by integrating 2D distributions in the polar system.

®  Error in the measured turbulence degree caused by the finite diameter of the
focus.

The L2F measurement time may be reduced by measuring only the central part of the
flow angle distribution and especially by using L2F optics with a small focus distance
s i.e. a large ratio of focus diamcter to distance, d/s. To be able to measurc small
turbulence degrees also in the case of large dfs, following relations have been quanti-
tatively determined:

®  The dependence of the height of the angle distribution on turbulence degree and
d/s.

¢ The sum of events in the angle distribution i.c. the probability of successfully
hitting start and stop focus as a function of the measurement parameters.

As the above mentioned relations have been derived only numerically and partly
analylically, there is still a strong nced to check the relations by experiment.
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Appendix: Distortion of a focus by a plane window

It is known that a focussed light beam will be distorted when it passes a plane win-
dow. When the light beam axis deviates strongly from the vertical on the window this
distortion is especially marked.

It is assumed that without a glass window the light beam is perfectly focussed. Then
the light beam is a conc with the cone angle §. A rectangular coordinate system is
chosen such that the focus of the undisturbed beam is at the origin. Now a plane glass
window of thickness t will be inserted. The light beam axis and the vertical on the
window include an angle o (sce Figure 11 ). The x-direction of the coordinate system
coincides with the vertical on the window, y- and z-axis arc parallcl to the planc panc
of glass and the y-axis is furthermore located in the planc of becam axis and vertical
of the window.

After the insertion of the glass panc a single light ray can be described by following
formulas (a'= angle included by light ray and glass vertical in the xy-plane; &' =
angle between light ray and xy-planc).

Light ray above the pane of glass:

y=xtanao'

z=2xtan & [cos o’ (16)

Light below the panc of glass (thickness t, refractive index n):

tsin o' cos &’
\/nz — 1 + cos’a’ cos™d’
. x+ytand’ Csin &' (17

cos o 2
\/n 1 4 cos2a’ cos2s’

y= x+titana’ —
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Figure I1. Light rays

After inserting the glass window any two light rays will no longer intersect. But using
the L2F optics the cone angle § of the light beam is rclatively small (in our case § =
7,2° 6/2 = 0,06 rad). Thercfore it is sufficient to inspect light ravs which are necar to
the axis of the beam. The angle o of light beam and vertical on the window shall not
be neglected.

One gets following equations for the point of intersection of the light rays in the xy-
plane (0" =0, 0" =0 + ¢, ¢ <€ 1)

X+t _ n’ cos’a
t (n® — sin’ )3;2
y (I - nz)sinaa ) 2
T 312 (%)

(n® — sinza)

z =10

in contrast to the above results one gets different formulas for the point of inter-
section of two light rays lying in the plane of beam-axis and z-axis, outside the xy-
planc (o' = o, &' = 4- &)
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X+t cos o

t o 2 2
n2~—51n2a

y =0, 7z = ()

(19)

The different coordinates of the two new focus which result from the cquations
according to (18) and (19) denote a distortion (an astigmatism). The shift of the ori-
ginal focus is not a problem, but the distortion cannotl be corrected (al lcast not casi-
ly) and it may lead (o a strong deterioration of the signal.

According to Figure [l the result may be interpreted in the following way: Somewhat
nearer to the original focus the light rays of the beam-axis, z-axis planc intersect. An
clliptic focus exists at that point. A little bit more distant from the x-axis the light rays
in the xy-plane interscct. Here again the focus is clliptic. In between the two inter-
scction locations according to (18) and (19) the ‘focus’ is round but much thicker than
the original one. As a characteristic length of the distortion onc may take the distance
of the two intersection locations according to (18) and (19). This characteristic length
is plotted in Figure 12 .
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Figure 12.  Characteristic length of distortion of the focus by a plane window (n=1.51)

From the above equations one may also compule the direction of the distortion. It
results that the direction of the distortion is in the direction of the ncw beam axis.
That is why the distance, s, of the L2F start- and stop focus remain the same after
insertion of the plane glass window. The latter result could be confirmed cxper-
imentally. To correct the distortion a cylinder lens would be NCCessATY.





