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1.  INTRODUCTION

Measurements in high-subsonic, transonic and supersonic flows are often
made by means of intrusive probes, and considerable attention is given to the
calibrations of these probes (eg the 7th Proceedings of this series of meetings). The
most difficult regime is the transonic range, especially in internal flows. However, it
would appear that the existence of a theoretical constraint at M=1 has been
overiocked: the basis of the consiraint is given in the texts of Liepmann &
Roshko(1966) and Shapiro(1954), and possibly elsewhere, but has not been applied to
probe calibrations - at least as far as the open literature available to the author is
shows. The contraint applies to any intrusive probe, though not irrespectively of its
shape.

The constraint is derived in Section 2 in the context of pressure-sensing
probes, although the constraint .applies to any probe - e.g. velocity-sensing probe.
The principal result is that the secnsitivity of any static-pressure probe to static
pressure must be zero at M=I1. It follows that the sensitivity near M=1 must be low. A
further implication is that the insensitivity to the static pressure can disguise an
~error in a calibration arising from an error in the 'true' static pressure, which is
usually not easy to determine in transonic flows. Flow-direction probes on the other
hand retain a non-zero sensitivity to flow-direction but the sensitivity is reduced
through M=1.

In Sections 4 and 5 some transonic calibrations of simple disk-type static
pressure probes and two-hole Conrad flow-direction probes are given, partly to
demonstrate the theoretical constraint in the vicinity of M=1. However, they are also
included for two other reasons. Firstly, because other features are demonstated
which, as far as the presert author is aware, are not mentioned in the literature.
Secondly, because the present calibrations were of probes with relatively simple
geometries. The calibrations where made in the slightly wet, low-pressure steam in
the CERL steam tunnel in the course of other work. Woetness effects were negligible.
Details of the probes are given in Figure 1. The Conrad probes were made according
to the guidelines given by Chue(1975). Although the yaw probe was to be used as
"nulling” device - i.c. rotating it a measured angle for zcro pressure difference
between the sensing holes - its use in this manner requires a well behaved yaw -
calibration.

The effects of transverse gradients of Mach number or total pressure, or both,
are, it is argued, likely to be large in the transomic range, causing doubt about the
accuracy of measurements in non-uniform transonic flows.  Streamwise-gradients of
Mach number are also likely to cause errors. Shock reflections, blockage effects, etc
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in internal fiows are not considered here, but are likely to cause further errors, of
course.

2 THEORETICAL CONSIDERATIONS ATM=1

The distance a detached shock stands ahead of a body in a uniform supersonic
flow increases indefinitely, and its strength tends to zero, as the Mach number, M,
ahead of the shock tends to unity. This is because at Mach numbers very slightly less
than unity disturbances must travel in all directions to infinty: if the detached shock
strength became zero at a finite distance then there would have to be a discontinuity
in flow pattern at M=1. Therefore, at Mach numbers very slightly above umity the
shock stands well ahead of the probe and must be very nearly normal to the flow
(and, of course, very weak). It follows that the Mach number MA of the flow
downstream of the shock is just subsomic. Thus in the limit, as M (>1) tends to unity,
the flow over the probe becomes identical to a subsonic free-stream flow at Mach
number MA, which, from the normal-shock relations, is related to M by MA = 2 - M,

Now if M' is the Mach number at an arbitrary point on or mear the probe, it
follows that

lim (AM% _

From the normal-shock relations it is straightforward to show that

A

lim _d/Po™y _
W =< po) =0, 2.2

where po and po” are the total pressures upstream and downstream of the shock,
respectively. If p' is the pressure at the arbitrary point then, because the flow
downstream of the shock is isentropic,

=Y
]1 = M(]*‘EM'z)‘Y‘I : 2.3
Po Po 2
Differentiating w.r.t. M gives
Y , 1
drp'y _ ﬂ.z)"f-ldpgi (1-_1.2) plam
2 po)_(1+2 M = po)-yM M) B 24
so that in the limit M=1 '
lim (dp\ _ . 9.5
M->1 dpo) =~ .

If p is the static pressure upstream of the shock then

o 4
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and so
lim _d(p)_  2Y 26
M->1 dM Po 'Y.'.l )

Thus, whilst p/p, changes with M as M passes through unity, at the rate given by
equation 2.5, p'fpo does not. That is, the pressure p' is insensitive to changes in the
pressure p as M passes through unity; the sensitivity of any probe - such as a static-
pressure probe - to a change in static pressure p (or, equivalently, Mach number) is
zero at '‘M=1. It follows that the sensitivity near M=1 must be low.

The disk-probe calibration are presented in the form p'/p ~ M. From equations
2.5 and 2.6 the limiting gradient for the ratio becomes

J(L' _2Ap 2.7
dM\p - 1 P
: M=1 M=1

Hence, at M=1, the gradient of the calibration expressed in terms of p'/p as a function
of M is equal to p'/p at M=1 multiplied by the factor 29/(y+1). Moreover, since p'/p
must always be positive it follows that the left hand side of equation 2.7 must also
always be positive, At low Mach numbers where compressibility effects are small the

pressure ceofficient Cp, defined as Cp= (p'-p)/ypM2/2, is very nearly independent of
Mach number, whereupon d(p'/p)/oM = YMCyp: the sign of d(p'/p)/OM depends upon

the sign of Cp. Thus, if Cp is negative in this range then d(p'/p)/OM must change
sign somewhere in the higher subsonic Mach number range, whercas this is
probably not so if C, is positive.

If Ap' is the difference of two pressures on or near the probe then it follows
from equation 2.7 that

d(AP') _ 2y Ap
dM\ p w1 P
=1 IM=1

In Section 5 the flow-direction probe calibrations are expressed in terms of a
pressure coefficient, Cp, where

Ap
Co= i
YPM</2
whereupon it follows that
2
dCp I A , 2.8
=] =1

and that
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where y is a yaw (or, with ¢ instead of v, a pitch) angle. Flow angle are defined in
Figure 3.

An inversion function I(M) is defined by equation 4.2 in Section 4. Applying
the above arguments leads to the result that

d
T 10D = 0. _ 2.10
=1

Indeed, if K, say, is any arbitrary non-dimensional calibration coefficient defined
purely in terms of pressures on (or near) the probe, or non-dimensionalised by the

upstream total pressure then the basic argument implies that OK/9M = 0 at M=1.

From the basic argument it also follows that streamline directions adjacent to -
and near the probe should be invariant with Mach number in the limit M=1. Thus for

example 0y /OM and 9¢_/0M, where VY, and ¢ are defined in Section 5, should be
zero at M=1. -

3 CALIBRATION FACILITY

The transonic test section, which is shown in Figure 2, has been discussed by
Wo0d(1983), but the main points are briefly repeated here. The test-section Mach
number in the range 0.87 < M < 1.2 was controlled by means of the flaps which
allowed the flow to expand through the two porous walls. These walls performed a
double function, the other being the elimination of incident shock waves. The test-
section static pressure was inferred from wall tappings in one of the non-porous side
walls. The probe to be calibrated was supported in a 25.4mm dia plug which was. .
mounted in one of two circular windows, itself mounted in the other side wall.

Depending upon the circular window employed the probe pitch could be set at ¢ =0°,

+10¢ or -109 - see Figure 3 for definition of angles. The geometrical blockage area
imposed by each probe head and body was ~0.52%. Mach numbers less than 0.87 were
achieved by either reducing the mass flow or by raising the back pressure, the
former reducing the Reynolds number but the latter leaving it roughly constant.

It was not possible to permanently mount a total pressure probe in the test
scction such that for supersonic flow its shock wave affected neithes the probe to be
calibrated nor the wall-tapping pressures, and such that it was itself unaffected by
the probe to be calibrated. In subsonic dry-gas flows the total pressure can be
measured in the settling chamber, but here there was a small loss of total pressure
duc to fine droplets. At supersonic Mach numbers an additional loss arose from low-
intensity weak shock waves (or "shocklets") emanating from the flow over the
perforated walls. Therefore, the Pitot-type total-pressure probe was positioned as
shown in Figure 2, and moved to the retracted position shown once the total pressure
had been measured. The Mach number in this paper is the gas-phase (or 'frozen

flow) Mach number, where a value of +Y=1.3 has been used throughout. Wetness

levels were 0.02 by mass fraction or less. No adjustments were made to the measured
total pressure. The error in Mach number is less than 1%, and the effect on the
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calibrations, as determined by some measurcments in super-heated steam showed no
cffect of wetness.

Wall effects arising from solid side walls were not examined in detail. Other
probe-calibration work in the same facility had indicated no significant effect, but
since no detailed investigation was made in the present work it is not possible to be
certain that wall effects were not significant.

Errors in Mach number and pressure arising from systematic measurement
errors are listed below

) M 0.6 1.2
&M £0.9% . +0.6%
Sp/p +0.3% +0.8%

whilst errors associated with drift in tunnel conditions, etc were within about +0.5%
and £0.3% in M and p, respectively. The errors at the lower Reynolds number were
about twice the above figures.

4 DISK-PROBE CALIBRATIONS

Figure 4 shows the pressure ratio pg/p as a function of Mach number, M, and

pitch, ¢, for probe DA where pq is the pressure sensed by disk probe. This figure also
includes the theoretical slope given by equation 2.7 plotted through the measured
value of (pg/p)M=1. The measured calibration clearly conforms to the theoretical
slope in the range 1 £ M < 1.1, although the high degree of coincidence towards the
upper end of this range must be regarded as largely fortuitous. This is because,
although the extent, AM, over which the linear variation might be approximately
correct cannot be determined from the analysis, the basis of the analysis implies the

range of approximate validity would be 1-AM < M < 1+AM, which is clearly not so in
these cases for any significant AM (>0.01, say).

Above the linear region two of the curves show fairly sharp peaks and rapid
decreases in pg/p with M. The decrease is to be expected if the behaviour of the
probe is to tend to that for am aerodynamically thin body with an attached leading-
edge shock.

The broken curve shown in Figure 4 is a curve of constant pressure
coefficient, defined by

Co = 24P 41
(U 2 . .
YpM</2

Some variation of Cp with M is to be expected in this range although the assumption
of constant Cp would appear to be reasonable for a moderate range of M. Note, the
Prandtl-Glavert similarity law Cp=Cpo(1-M2)1/2, where Cpo is the pressure coefficient

at M=0, applies to only two-dimensional flow: the finite span precludes this form of
similarity law for subsonic irrotational flow about thin three-dimensional bodies.
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The inversion function I(M), which assumes a total pressure measurement
Pom- is shown in Figure 5 and 6 for the (smoothed) calibration data of probe DA
(given in Figure 4) and probe DB. I(M) is defined by

Pom _ _(Pom/Po)(Po/P)
Ta (pq/pP)

M) = 42

where for M £ 1 pom/po =1, and for M> 1 pom/po is given by the relationship for
total pressure across a normal shock. As shown in Section 2, equation 2.10, dI(M)/dM
is zero at M=1, and the weak dependence of I(M) near M=l is therefore to be expected.
The pitch effect is clearly evident and is large in the range 0.8 < M £ 1.2.. For

example, a pitch error of 10° can give a Mach number error 8M of up to &M = 0.2,

The differences between the calibrations in the two disk probes - Figures 5 & 6
- were probably due to differences in disk profile, which was not finely controlled,
and the difference in the probe support. The Reynolds number Req in Figure 4 is -
based on the disk diameter.

5 FLOW-DIRECTION PROBE CALIBRATIONS
5.1 Yaw probes

Figure 7 shows the difference in pressures p' and p" sensed by the two holesﬂiof
the yaw probe YA as a function of yaw angle and Mach number in terms of the . -
pressure coecficient defined by

C _ p" - p' 5 1
P —'YPMZIZ '

At constant M, Cp is linear with respect to Y to within <19 over the range -15¢ & -l}f_:I:
+150. Figure 8 shows the Mach number variation of the sensitivity gradient anla‘I’
and the yaw angle Y, at which CIJ is zero. The sensitivity below M = 0.85 is evidcnt]y

closely constant at dCp/dy = 0.048 which is comparable with other two-hole Conrad.

probes of similar apex angle and tube-diameter ratio. Bryer & Pankhurst (1971)
indicate for incompressible flow a sensitivity between 0.043 to 0.050, and quote 0.49 as

typical. A decrease in an/3\|I with Mach number near M=1 is to be expected for the
reasons given in Section 2, and the data can be seen to be consisterft with the '
theoretical slope, equation 2.9. Also, the smooth (and in fact only slight) variation of
dCp/dy with M at supersonic Mach numbers is most likely helped by the fact that the
apex angle was large enough to have maintained a detached shock. A shock
attachment is likely to cause a sudden change in the senmsitivity. Comparable results
were obtained for probe YB. Departure of W, from zero accounts for asymmetry of

the probe and probe-setting angle errors with respect to the flow direction which
was assumed to be parallel to the tunnel centre line. The slight variation with Mach
number is within the setting error,
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Figure 10b shows pressure coefficients based upon the mean tube pressure
(p'+p")/2 and the static pressure p, and upon (p'+p")/2 and the measured total
pressure, pom. An inversion function similar to that defined by equation 4.2, namely
the pressure ratio, 2pom/(p+p"), is shown in Figure 10a for the probe aligned with
the flow. Clearly, because of the small variation with Mach number, such a probe is
considerably less useful than the disk probe for measuring static pressure.
Furthermore, compared with pom/p, 2pom/(p'+p™) did not differ substantially from
unity over the given Mach number range, suggesting that this type of probe would
not be very accurate as a static .pressure probe at lower Mach numbers. This is
consistent with the finding of Dudzinski & Krause (1969) for the range 0.3 < M < 0.9,

52 Pitch probes
+

Figure 9 shows the pitch-probe sensitivity dCp/d¢ and the zero-Cp pitch angel,
90, for probe PB. The results for probe PA were consistent with those for PB. Cp is
defined by eqation 5.1 where p' and p" are here the pressures sensed by the inner
and outer tubes respectively. 9Cp/d¢ is evidently higher than that for the yaw
probes, increasing over nearly the entire subsonic range from a sensitivity at low
Mach numbers fairly close to that for the yaw probes. This increase in sensitivity
with Mach number would appear to be an effect of the support body since it does not
appear in the yaw probe calibrations where the support body is perpendicular to the
plane of flow-direction sensitivity, the sensing-head geometries being the same for
both probes. Presumably, this effect is related to the pitch-sensitivity of the disk
probes. For the simple reason of asymmetry of the pitch probe in the pitch plane Cp
at zero pitch would not be zero. Near M=l the decrease in sensitivity is comparable
with the theoretical reduction.

6 FURTHER COMMENTS

Figurell shows some of the data from the calibration exercises reported at the

7th Symposium for the WP11 probe, together with the theoretical slope at M=1.
Although the agreement between the calibrations is apparently better near M=1 and
in reasonable if not good agreement with the theoretical slope the aggreement 'is
illusory if the Mach number, M, is obtained from the 'true' static pressure, p, (or vice
versa). This can be shown as follows.

If we write
-_‘Il
T t _1 -
P_ = L(I+Y_..M2)‘y
P Po 2

and note that p'/p0 is fixed in the present context, the rate of change of p'/p with M
is given by

#0)- m()'E

_d(P_L _ X p
dMip v+1 P
Mol

s0 that at M=1
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This is the same as the result of equation 2.7 in Section 2. Thus, near M=1 an error in
p is such that the plotted values of p'/p and M are displaced in a direction closely
coincident with the theoretical result for the true calibration curve at M=1. The same
conclusion follows for any form of calibration parameter, and does so precisely
because of the fundamentally low scositivity of any probe to a change in static
pressure close to M=1. It does not imply greater accuracy: the accuracy of a static-
pressure probe calibration depends upon with which p is determined in the first
place. However, the insensitivity to errors in true pressure, p, are much more
immediately obvious for a calibration presented in the form I(M) than they are for
P4/p against M, for example.

The large effect of the probe body, evident in both the Disk-probe and pitch-
probe calibrations, implies that measurements in flows with transverse variations of
Mach number (or total pressure, or both) in the direction of the probe body are
likely to be significantly in error. Measurements by the present author in a non-
uniform flow were discarded for Mach numbers in excess of 0.8 because the implied
streamline curvature was almost certainly spurious. Streamwise gradients of Mach
number will affect the distance the shock stands ahead of the probe, and gradients
large cnough to cause a large change are also likely to cause significant errors.
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(c) Pitch probes PA and PB

FIGURE 1 PROBE CONFIGURATIONS {(Dimensions as mm.)
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Pressure tappings on window centre-line, spaced 12.7 mm
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(b) Side elevation

FIGURE 2 TEST SECTION LAYOUT




24-11

h, sensing head axis

=
QF n< DF m< S - N I

body axis

velocity vector

Probe support axis

Perpendicular to V in V-s plane
Angle between s and n

Sensing head axis-perpendicular to s

Rotation angle about s of h from V-s plant

Vecos ¢

. in V-s plane
Vsin 4 P
Vcos ¢ cos in h-direction

Vcos ¢ sin § perpendicular to h-s plane

FIGURE 3 PITCH AND YAW ANGLE CONVENTION
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FIGURE 7 PRESSURE DIFFERENCE COEFFICIENT C OF YAW PROBE YA
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FIGURE 8 YAW PROBE YA CALIBRATION PARAMETERS

Tangent at M = 1

FIGURE 9 PITCH PROBE PB CALIBRATION ( ——=

Pitch probe PA)
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zero slope at M = 1
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(PI + p“)
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{a) Inversion function for yaw and total probes aligned with the flow

.

(b} Pressure coefficients
Figure (¢ = Q)

FIGURE 10
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